Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Summary

Centroidal Voronoi tessellations can be constructed using iterative improvement methods such as Lloyd’s method. Using iterative improvement methods implies that the convergence speed and the quality of the results depend on the initialization methods. In this chapter, we briefly describe how to construct centroidal Voronoi tessellations on surface meshes and propose efficient initialization methods. The proposed methods try to make initial tessellations mimic the properties of the centroidal Voronoi tessellations. We compare our methods with other initialization methods: random sampling and farthest point sampling. The experimental results show that our methods have the faster convergence speed than farthest point sampling and outperform random sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez, P., Colin de Verdière, É., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Proceedings of Shape Modeling International, pp. 49–58 (2003)

    Google Scholar 

  2. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. Proceedings of SIGGRAPH of ACM Transactions on Graphics 23(3), 905–914 (2004)

    Article  Google Scholar 

  3. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM Journal on Scientific Computing 24(5), 1488–1506 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  6. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 37(10), 1568–1575 (1989)

    Article  Google Scholar 

  7. Frey, P.J., Borouchaki, H.: Geometric surface mesh optimization. Computing and Visualization in Science 1(3), 113–121 (1998)

    Article  MATH  Google Scholar 

  8. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH, pp. 209–216 (1997)

    Google Scholar 

  9. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of Symposium on Interactive 3D Graphics, pp. 49–58 (2001)

    Google Scholar 

  10. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  11. Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH, pp. 99–108 (1996)

    Google Scholar 

  12. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of SIGGRAPH, pp. 19–26 (1993)

    Google Scholar 

  13. Iri, M., Murota, K., Ohya, T.: A fast Voronoi-diagram algorithm with applications to geographical optimization problems. In: Proceedings of the 11th IFIP Conference on System Modelling and Optimization, pp. 273–288 (1984)

    Google Scholar 

  14. Katsavounidis, I., Kuo, C.-C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Processing Letters 1(10), 144–146 (1994)

    Article  Google Scholar 

  15. Kim, J., Lee, S.: Transitive mesh space of a progressive mesh. IEEE Transactions on Visualization and Computer Graphics 9(4), 463–480 (2003)

    Article  Google Scholar 

  16. Kurita, T.: An efficient clustering algorithm for region merging. IEICE Trans. on Information and Systems  E78-D (12), 1546–1551 (2003)

    Google Scholar 

  17. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp. 281–297 (1967)

    Google Scholar 

  19. Peyré, G., Cohen, L.: Surface segmentation using geodesic centroidal tesselation. In: Proceedings of 3D Data Processing, Visualization, and Transmission, pp. 995–1002 (2004)

    Google Scholar 

  20. Southern, R., Marais, P., Blake, E.: Generic memoryless polygonal simplification. In: Proceedings of AFRIGRAPH, pp. 7–15 (2001)

    Google Scholar 

  21. Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: Proceedings of 12th International Meshing Roundtable, pp. 215–224 (2003)

    Google Scholar 

  22. Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. In: Proceedings of Eurographics, pp. 381–389 (2004)

    Google Scholar 

  23. Ward, J.H.: Hierarchical grouping to optimize an objection function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  24. Wu, J., Kobbelt, L.: Fast mesh decimation by multiple-choice techniques. In: Proceedings of Vision, Modeling and Visualization, pp. 241–248 (2002)

    Google Scholar 

  25. Wu, J., Kobbelt, L.: Structure recovery via hybrid variational surface approximation. In: Proceedings of Eurographics, pp. 277–284 (2005)

    Google Scholar 

  26. Xia, J.C., Varshney, A.: Dynamic view-dependent simplification for polygonal models. In: Proceedings of Visualization, pp. 327–334 (1996)

    Google Scholar 

  27. Yan, D.-M., Liu, Y., Wang, W.: Quadric surface extraction by variational shape approximation. In: Proceedings of Geometric Modeling and Processing, pp. 73–86 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moriguchi, M., Sugihara, K. (2009). Constructing Centroidal Voronoi Tessellations on Surface Meshes. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics