Skip to main content

Functional Anatomy of Muscle: Muscle, Nociceptors and Afferent Fibers

  • Chapter
  • First Online:

Abstract

Nociceptors are free nerve endings, but not all free nerve endings in skeletal muscle are nociceptive. Nociceptive free nerve endings are connected to the CNS by thin myelinated fibers or unmyelinated afferent fibers. In the light microscope, free nerve endings look like a string of beads, i.e., they consist of axonal expansions (varicosities) connected by thin axonal segments. The neuropeptide substance P has been reported to be present predominantly in nociceptive afferent fibers. In the electron microscope, a prominent feature of nociceptive nerve endings is that they are not free in the strict sense but ensheathed by Schwann cells. At present, there are no clear ultrastructural differences between non-nociceptive free nerve endings (e.g., sensitive mechanoreceptors and thermoreceptors) and nociceptive ones. Functionally, different free nerve endings are assumed to possess different sets of receptor molecules in their axonal membrane. Receptor molecules that are particularly important for the function of muscle nociceptors are acid-sensing ion channels (ASICs) that open at a low tissue pH, P2X3 receptors that are activated by binding adenosine triphosphate (ATP), and the transient receptor potential receptor subtype 1 (TRPV1) that is sensitive to high temperatures and low pH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams VC, Lynn B, Richmond FJ (1984) Organization and sensory properties of small myelinated fibres in the dorsal cervical rami of the cat. J Physiol 347:177–187

    PubMed  CAS  Google Scholar 

  • Andres KH, von Düring M (1973) Morphology of cutaneous receptors. In: Iggo A (ed) Handbook of sensory physiology, vol 2, Somatosensory system. Springer, Berlin, Heidelberg

    Google Scholar 

  • Andres KH, von Düring M, Schmidt RF (1985) Sensory innervation of the Achilles tendon by group III and IV afferent fibers. Anat Embryol 172:145–156

    Article  PubMed  CAS  Google Scholar 

  • Applebaum ML, Clifton GL, Coggeshall RE et al. (1976) Unmyelinated fibers in the sacral 3 and caudal 1 ventral root of the cat. J Physiol 256:557–572

    PubMed  CAS  Google Scholar 

  • Bednar DA, Orr FW, Simon GT (1995) Observations on the pathomorphology of the thoracolumbar fascia in chronic mechanical back pain. A microscopic study. Spine 20:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    PubMed  CAS  Google Scholar 

  • Bogduk N, Macintosh JE (1984) The applied anatomy of the thoracolumbar fascia. Spine 9:164–170

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA (2007) Anatomy of the oculomotor system. Dev Ophthalmol 40:1–14

    Article  PubMed  Google Scholar 

  • Cairns BE, Svensson P, Wang K et al. (2006) Ketamine attenuates glutamate-induced mechanical sensitization of the masseter muscle in human males. Exp Brain Res 169:467–472

    Article  PubMed  CAS  Google Scholar 

  • Campbell KS, Lakie M (1998) A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle. J Physiol 510:941–962

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, David J (1999) Sense and specificity: a molecular identity for nociceptors. Curr Opin Neurobiol 9:525–530

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  PubMed  CAS  Google Scholar 

  • Cesare P, McNaughton P (1997) Peripheral pain mechanisms. Curr Opin Neurobiol 7:493–499

    Article  PubMed  CAS  Google Scholar 

  • Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47

    Article  PubMed  CAS  Google Scholar 

  • Crago PE, Houk JC, Rymer WZ (1982) Sampling of total muscle force by tendon organs. J Neurophysiol 47:1069–1083

    PubMed  CAS  Google Scholar 

  • Ding Y, Cesare P, Drew L et al. (2000) ATP, P2X receptors, and pain pathways. J Auton Nerv Syst 81:289–294

    Article  PubMed  CAS  Google Scholar 

  • Djouhri L, Lawson SN (2004) Ab-fiber nociceptive primary afferent neurons: a review of 1392 incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res 1393 Rev 46:131–145

    Article  Google Scholar 

  • Erlanger J, Gasser HS (1930) The action potential in fibres of slow conduction in spinal roots and somatic nerves. Am J Physiol 92:43–82

    Google Scholar 

  • Gamse R, Saria A (1985) Potentiation of tachykinin-induced plasma protein extravasation by calcitonin gene-related peptide. Eur J Pharmacol 114:61–66

    Article  PubMed  CAS  Google Scholar 

  • Garry MG, Miller KE, Seybold VS (1989) Lumbar dorsal root ganglia of the cat: a quantitative study of peptide immunoreactivity and cell size. J Comp Neurol 284:36–47

    Article  PubMed  CAS  Google Scholar 

  • Goodman MB, Lumpkin EA, Ricci A et al. (2004) Molecules and mechanisms of mechanotransduction. J Neurosci 24:9220–9222

    Article  PubMed  CAS  Google Scholar 

  • Gottschall J, Zenker W, Neuhuber W et al. (1980) The sternomastoid muscle of the rat and its innervation. Muscle fiber composition, perikarya and axons of efferent and afferent neurons. Anat Embryol 160:285–300

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T (2006) Fundamentals of muscle pain, referred pain and deep tissue hyperalgesia. Scand J Rheumatol 35:1–43

    Article  Google Scholar 

  • Heppelmann B, Messlinger K, Neiss W et al. (1990a) Ultrastructural three-dimensional reconstruction of group III and group IV sensory nerve endings (free nerve endings) in the knee joint capsule of the rat: evidence for multiple receptive sites. J Comp Neurol 292:103–116

    Article  PubMed  CAS  Google Scholar 

  • Heppelmann B, Messlinger K, Neiss WF et al. (1990b) The sensory terminal tree of ‘free nerve endings’ in the articular capsule of the knee. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron. Plenum, New York, London

    Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl AA et al. (1980) Peptidergic neurones. Nature 284:515–521

    Article  PubMed  Google Scholar 

  • Hoheisel U, Mense S (1987) Observations on the morphology of axons and somata of slowly conducting dorsal root ganglion cells in the cat. Brain Res 423:269–278

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Mense S, Scherotzke R (1994) Calcitonin gene-related peptide-immunoreactivity in functionally identified primary afferent neurones in the rat. Anat Embryol 189:41–49

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  PubMed  CAS  Google Scholar 

  • Hudmon A, Choi JS, Tyrrell L et al. (2008) Phosphorylation of sodium channel Nav1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci 28:3190–3201

    Article  PubMed  CAS  Google Scholar 

  • Immke DC, McCleskey EW (2003) Protons open acid-sensing channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Spinal reflexes. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sci 3:175–190

    Google Scholar 

  • Kenins P (1988) The functional anatomy of the receptive fields of rabbit C polymodal nociceptors. J Neurophysiol 59:1098–1115

    PubMed  CAS  Google Scholar 

  • Kow LM, Pfaff DW (1988) Neuromodulatory actions of peptides. Annu Rev Pharmacol Toxicol 28:163–188

    Article  PubMed  CAS  Google Scholar 

  • Kruger L, Light AR, Schweizer FE (2003) Axonal terminals of sensory neurons and their morphological diversity. J Neurocytol 32:205–216

    Article  PubMed  Google Scholar 

  • Kumazawa T (1996) The polymodal receptor; bio-warning and defense system. In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fiber receptors responding to mechanical, chemical and thermal stimulation in the skeletal muscle of the dog. J Physiol 273:179–194

    PubMed  CAS  Google Scholar 

  • Kuslich SD, Ulstrom CL, Michael CJ (1991) The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 22:181–187

    PubMed  CAS  Google Scholar 

  • Lawson SN, Crepps BA, Perl ER (1997) Relationship of substance P to afferent characteristics of dorsal root ganglion neurons in guinea-pig. J Physiol 505:177–191

    Article  PubMed  CAS  Google Scholar 

  • Leah JD, Cameron AA, Snow PJ (1985) Neuropeptides in physiologically indentified mammalian sensory neurones. Neurosci Lett 56:257–263

    Article  PubMed  CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedebergs Arch Pharmacol 310:175–183

    Article  PubMed  CAS  Google Scholar 

  • Li W, Stephens NL (1994) Auxotonic loading and airway smooth muscle shortening. Can J Physiol Pharmacol 72:1458–1463

    Article  PubMed  CAS  Google Scholar 

  • Liedtke W (2005) TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J Physiol 567:53–58

    Article  PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (2003) Unmyelinated afferent fibers are not only for pain anymore. J Comp Neurol 461:140–150

    Article  Google Scholar 

  • Lloyd DPC (1943) Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. J Neurophysiol 6:293–315

    Google Scholar 

  • Macpherson LJ, Xiao B, Kwan KY et al. (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • Marchettini P, Simone DA, Caputi G et al. (1996) Pain from excitation of identified muscle nociceptors in humans. Brain Res 740:109–116

    Article  PubMed  CAS  Google Scholar 

  • Matsutomi T, Nakamoto C, Zheng T et al. (2006) Multiple types of Na(+) currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia. Pflugers Arch 453:83–96

    Article  PubMed  CAS  Google Scholar 

  • McCleskey EW, Gold MS (1999) Ion channels of nociception. Ann Rev Physiol 61:835–856

    Article  CAS  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day CS et al. (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxytryptamine and prostaglandin E2. Brain Res 225:95–105

    Article  PubMed  CAS  Google Scholar 

  • Mense S (2007) Muscle nociceptors and their neurochemistry. In: Schmidt RF, Willis WD (eds) Encyclopedic reference of pain. Springer, Berlin, Heidelberg

    Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403–417

    PubMed  CAS  Google Scholar 

  • Messlinger K (1996) Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues. In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  • Mitchell JH, Schmidt RF (1983) Cardiovascular reflex control by afferent fibers from skeletal muscle receptors. In: Shepherd JT, Abboud FM (eds) Handbook of Physiology, Sect. 2: The Cardiovascular System, vol 3: Peripheral circulation and organ blood flow, Part 2. American Physiological Society, Bethesda

    Google Scholar 

  • Molander C, Ygge I, Dalsgaard CJ (1987) Substance P-, somatostatin-, and calcitonin gene-related peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labeled cutaneous, muscular and visceral primary sensory neurons in the rat. Neurosci Lett 74:37–42

    Article  PubMed  CAS  Google Scholar 

  • Mörk H, Ashina M, Bendtsen L et al. (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153

    Article  PubMed  Google Scholar 

  • Morley JE, Kay NE, Solomon GF et al. (1987) Neuropeptides: conductors of the immune orchestra. Life Sci 41:527–544

    Article  PubMed  CAS  Google Scholar 

  • O'Brien C, Woolf CJ, Fitzgerald M et al. (1989) Differences in the chemical expression of rat primary afferent neurons which innervate skin, muscle or joint. Neuroscience 32:493–502

    Article  PubMed  Google Scholar 

  • Öhlén A, Wiklund NP, Persson MG et al. (1988) Calcitonin gene-related peptide desensitizes skeletal muscle arterioles to substance P in vivo. Br J Pharmacol 95:673–674

    Article  PubMed  Google Scholar 

  • Perkins MN, Kelly D (1993) Induction of bradykinin-B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  • Reeh P, Kress M (2001) Molecular physiology of proton transduction in nociceptors. Curr Opin Pharmacol 1:45–51

    Article  PubMed  CAS  Google Scholar 

  • Reinert A, Kaske A, Mense S (1998) Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res 121:174–180

    Article  PubMed  CAS  Google Scholar 

  • Sandoz PA, Zenker W (1986) Unmyelinated axons in a muscle nerve. Electron microscopic morphometry of the sternomastoid nerve in normal and sympathectomized rats. Anat Embryol 174:207–213

    Article  PubMed  CAS  Google Scholar 

  • Schleip R, Klingler W, Lehmann-Horn F (2005) Active fascial contractility: fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics. Med Hypotheses 65:273–277

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral long-lasting hyperalgesia. Muscle Nerve 24:37–46

    Article  PubMed  CAS  Google Scholar 

  • Stacey MJ (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105:231–254

    PubMed  CAS  Google Scholar 

  • Steffens H, Eek B, Trudrung P et al. (2003) Tetrodotoxin block of A-fiber afferents from skin and muscle – a tool to study pure C-fiber effects in the spinal cord. Pflügers Arch 445:607–613

    PubMed  CAS  Google Scholar 

  • Stewart LC, Deslauriers R, Kupriyanov VV (1994) Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study. J Mol Cell Cardiol 26:1377–1392

    Article  PubMed  CAS  Google Scholar 

  • Tai C, Zhu S, Zhou N (2008) TRPA1: the central molecule for chemical sensing in pain pathways? J Neurosci 28:1019–1021

    Article  PubMed  CAS  Google Scholar 

  • von Düring M, Andres KH (1990) Topography and ultrastructure of group III and IV nerve terminals of the cat's gastrocnemius–soleus muscle. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron. Plenum, New York, pp 35–41

    Chapter  Google Scholar 

  • Weddell G, Harpman JA (1940) The neurohistological basis for the sensation of pain provoked from deep fascia, tendon, and periosteum. J Neurol Psychiatry 3:319–328

    Article  PubMed  CAS  Google Scholar 

  • Yahia L, Rhalmi S, Newman N et al. (1992) Sensory innervation of human thoracolumbar fascia. An immunohistochemical study. Acta Orthop Scand 63:195–197

    Article  PubMed  CAS  Google Scholar 

  • Yarnitsky D (2008) Low threshold nociceptors: a challenge to sensory physiology. Pain 135:5–6

    Article  PubMed  Google Scholar 

  • Zhang XF, Chen J, Faltynek CR et al. (2008) Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci 27:605–611

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mense .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mense, S. (2010). Functional Anatomy of Muscle: Muscle, Nociceptors and Afferent Fibers. In: Mense, S., Gerwin, R. (eds) Muscle Pain: Understanding the Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85021-2_2

Download citation

Publish with us

Policies and ethics