Skip to main content

Wavelet-Based 3-D Multifractal Spectrum with Applications in Breast MRI Images

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2008)

Abstract

Breast cancer is the second leading cause of death in women in the United States. Breast Magnetic Resonance Imaging (BMRI) is an emerging tool in breast cancer diagnostics and research, and it is becoming routine in clinical practice. Recently, the American Cancer Society (ACS) recommended that women at very high risk of developing breast cancer have annual BMRI exams, in addition to annual mammograms, to increase the likelihood of early detection. (Saslow et al. [20] ). Many medical images demonstrate a certain degree of self-similarity over a range of scales. The multifractal spectrum (MFS) summarizes possibly variable degrees of scaling in one dimensional signals and has been widely used in fractal analysis. In this work, we develop a generalization of MFS to three dimensions and use dynamics of the scaling as discriminatory descriptors for the classification of BMRI images to benign and malignant. Methodology we propose was tested using breast MRI images for four anonymous subjects (two cancer, and two cancer-free cases). The dataset consists of BMRI scans obtained on a 1.5T GE Signa MR (with VIBRANT) scanner at Emory University. We demonstrate that meaningful descriptors show potential for classifying inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterson, R., Plewes, D.B.: Bilateral symmetry analysis of breast MRI. Phys. Med. Biol. 48, 3431–3443 (2003)

    Article  Google Scholar 

  2. Bocchi, L., Coppini, G., Nori, J., Valli, G.: Detection and clustered microcalcifications in mammograms using fractals models and neural networks. Medical Engineering & Physics 26, 303–312 (2004)

    Article  Google Scholar 

  3. Buckheit, J., Donoho, D.: Wavelab and reproducible research. Technical report, Stanford University (1995)

    Google Scholar 

  4. Chen, C., Daponte, J., Fox, M.: Fractal features analysis and classification in medical imaging. IEEE Transactions on Medical Imaging 8, 133–142 (1989)

    Article  Google Scholar 

  5. Derado, G., Bowman, F.D., Patel, R., Newell, M., Vidakovic, B.: Wavelet Image Interpolation (WII): A Wavelet-based Approach to Enhancement of Digital Mammography Images. In: Măndoiu, I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 203–214. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Curpen, B.N., Sickles, E.A., Sollitto, R.A.: The comparative value of mammographic screening for women 40-49 years old versus women 50-59 years old. AJR 164, 1099–1103 (1995)

    Google Scholar 

  7. Delbeke, L.: Wavelet based estimators for the Hurst parameter of a self-similar process, PhD Thesis, KU Leuven, Belgium (1998)

    Google Scholar 

  8. Ellis, R.: Large deviations for a general class of random vectors. Ann. Prob. 12, 1–12 (1984)

    Article  MATH  Google Scholar 

  9. Gonçalves, P., Riedi, R., Baraniuk, R.: Simple statistical analysis of wavelet-based multifractal spectrum estimation. In: Proceedings 32nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (1998)

    Google Scholar 

  10. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Thun, M.J.: Cancer Statistics. CA Cancer J. Clin. 57, 43–66 (2007)

    Google Scholar 

  11. Kestener, P., Lina, J.M., Saint-Jean, P., Arneodo, A.: Wavelet-based multifractal formalism to assist in diagnosis in digitized mammograms. Image Anal Stereol. 20, 169–174 (2001)

    MATH  Google Scholar 

  12. Kuklinski, W.S.: Utilization of fractal image models in medical image processing. Fractals 2, 363–369 (1994)

    Article  MATH  Google Scholar 

  13. Mainardi, L., Passera, K.M., Lucesoli, A., Vergnaghi, D., Trecate, G., Setti, E., Musumeci, R., Cerutti, S.: A Nonrigid Registration of MR Breast Images Using Complex-valued Wavelet Transform. Journal of Digital Imaging (published online February 28, 2007)

    Google Scholar 

  14. Moloney, K.P., Jacko, J.A., Vidakovic, B., Sainfort, F., Leonard, V.K., Shi, B.: Leveraging data complexity: Pupillary behavior of older adults with visual impairment during HCI. ACM Trans. Comput.-Hum. Interact. 13(3), 376–402 (2006)

    Article  Google Scholar 

  15. Morales, C.J.: Wavelet-based multifractal spectra estimation: Statistical aspects and applications. Ph.D thesis. Boston University Graduate School of Arts and Sciences (2002)

    Google Scholar 

  16. Priebe, C.E., Solka, J.L., Lorey, R.A., Rogers, G.W., Poston, W.L., Kallergi, M., Quian, W., Clarke, L.P., Clark, R.A.: The application of fractal analysis to mammographic tissue classification. Cancer letters 77, 183–189 (1994)

    Article  Google Scholar 

  17. Riedi, R.: Multifractal Processes in Theory and Applications of Long-Range Dependence. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.), pp. 625–716 (in Press, 2002)

    Google Scholar 

  18. Riedi, R.H.: An Introduction to multifractals, Tech Report, Dept. Statistics, Rice University (1999)

    Google Scholar 

  19. Riedi, R., Crouse, M.S., Ribeiro, V., Baraniuk, R.G.: A multifractal wavelet model with applications to TCP network traffic. IEEE Trans. Info. Theory (special issue on multiscale statistical signal analysis and its applications) (1999)

    Google Scholar 

  20. Saslow, D., Boetes, C., Burke, W., Harms, S., Leach, M.O., Lehman, C.D., Morris, E., Pisano, E., Schnall, M., Sener, S., Smith, R.A., Warner, E., Yaffe, M., Andrews, K.S., Russell, C.A.: MD for the American Cancer Society Breast Cancer Advisory Group. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography. CA Cancer J. Clin. 57, 75–89 (2007)

    Article  Google Scholar 

  21. Smart, C.R., Hendrick, R.E., Rutledge, J.H., Smith, R.A.: Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials. Cancer 75, 1619–1626 (1995)

    Article  Google Scholar 

  22. Vidakovic, B.: Statistical Modeling by Wavelets. Wiley, NY, USA (1999)

    MATH  Google Scholar 

  23. Yoshida, H., Doi, K., Nishikawa, R.M.L., Giger, M., Schmidt, R.A.: An improved computer-assisted diagnosis scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. Acad. Radiol. 3, 621–627 (1996)

    Article  Google Scholar 

  24. Zheng, B., Qian, W., Clarke, L.P.: Digital mammography: mixed feature neural network with spectral entropy decision for detection of microcalcifications. Med. Img. 15, 589–597 (1996)

    Google Scholar 

  25. Shi, B., Vidakovic, B., Katul, G.G., Albertson, J.D.: Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches. Physics of Fluids 17 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Derado, G. et al. (2008). Wavelet-Based 3-D Multifractal Spectrum with Applications in Breast MRI Images. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics