Skip to main content

Autonomous Gait Pattern for a Dynamic Biped Walking

  • Chapter
Informatics in Control Automation and Robotics

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 15))

  • 1990 Accesses

Abstract

In this paper, we propose an autonomous gait pattern for a dynamic biped walking based on a soft-computing approach. Our control strategy takes simultaneously advantage from a Fuzzy-CMAC based computation of robot’s swing leg’s desired trajectory and a high level control strategy allowing regulating the robot’s average velocity. The main interest of this approach is to proffer to the walking robot autonomy and adaptability involving only one parameter: the average velocity. We present results about transition of velocities and we show that the presented control strategy allows to increase robustness of the walking robot according to perturbation forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: system overview and integration. Proc. IEEE Conf. on Intelligent Robots and Systems, 2002, 2478–2483.

    Google Scholar 

  2. K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi. Humanoid robot HRP-2. Proc. IEEE Conf. on Robotics and Automation, 2004, 1083–1090.

    Google Scholar 

  3. M. Vukobratovic, B. Borovac. Zero moment point – thirty five years of its live. International Journal of Humanoid Robotics, 2004, Vol. 1 No 1, 157–173.

    Article  Google Scholar 

  4. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa. Biped walking pattern generation by using preview control of Zero-Moment Point. Proc. IEEE Conf. on Robotics and Automation, 2003, 1620–1626.

    Google Scholar 

  5. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 2001, Vol. 17, No 3, 280–289.

    Article  Google Scholar 

  6. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka. The development of honda humanoid robot. Proc. IEEE Conf. on Robotics and Automation, 1998, 1321–1326.

    Google Scholar 

  7. M. Vukobratovic, O. Timcenko. Stability analysis of certain class of bipedal walking robots with hybridization of classical and fuzzy control. Proc. International Conference on Advanced Robotics and Intelligent Automation, 1995, 290–295.

    Google Scholar 

  8. A. Brenbrahim, J. Franklin. Biped dynamic walking using reinforcement learning. Robotics and Autonomous Systems, 1997, Vol. 22, 283–302.

    Article  Google Scholar 

  9. C. Zhou, Q. Meng. Reinforcement learning with fuzzy evaluative feedback for a biped robot. Proc. IEEE Conf. on Robotics and Automation, 2000, 3829–3834.

    Google Scholar 

  10. F. Yamasaki, K. Endo, H. Kitano, M. Asada. Acquistion of humanoid walking motion using genetic algorithm – Considering characteristics of servo modules. Proc. IEEE Conf. on Robotics and Automation, 2002, 3123–3128.

    Google Scholar 

  11. A. L. Kun, T. Miller. The design process of the unified walking controller for the UNH biped. Proc. IEEE Conf. on Humanoid Robots, 2000.

    Google Scholar 

  12. J. Nakanishi, J. Morimoto, G. Endoa, G. Chenga, S. Schaala, and M. Kawatoa, Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 2004, Vol. 47, No 2–3, 79–91.

    Article  Google Scholar 

  13. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-de-Wit, J. W. Grizzle. RABBIT: A testbed for advanced control theory. IEEE Control Systems Magazine, 2003, Vol. 23, No 5, 57–79.

    Article  Google Scholar 

  14. http://robot-rabbit.lag.ensieg.inpg.fr/

    Google Scholar 

  15. http://www.laas.fr/robea/

    Google Scholar 

  16. C. Sabourin, O. Bruneau, G. Buche. Control strategy for the robust dynamic walk of a biped robot. The International Journal of Robotics Research (IJRR),2006, Vol. 25, No 9, 843–860.

    Article  Google Scholar 

  17. C. Sabourin, O. Bruneau. Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robotics and Autonomous Systems, 2005, Vol. 23, 81–99.

    Google Scholar 

  18. E. R. Westervelt, G. Buche, J. W. Grizzle. Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. The International Journal of Robotics Research, 2004, Vol. 23 No 6, 559–582.

    Article  Google Scholar 

  19. C. Sabourin, O. Bruneau, J.-G. Fontaine. Start, stop and transition of velocities on an underactuated bipedal robot without reference trajectories. Internationnal Journal of Humanoid Robotics, 2004, Vol. 1, No 2, 349–374.

    Article  Google Scholar 

  20. O. Bruneau, F.B. Ouezdou. Distributed ground/walking robot interactions. Robotica, Cambridge University Press, 1999, Vol. 17, No 3, 313–323.

    Google Scholar 

  21. J. S. Albus. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). Journal of Dynamic Systems, Measurement and Control, 1975, Vol. 97, 220–227.

    MATH  Google Scholar 

  22. J. S. Albus. Data storage in the cerebellar model articulation controller (CMAC). Journal of Dynamic Systems, Measurement and Control, 1975, Vol. 97, 228–233.

    MATH  Google Scholar 

  23. W. T. Miller, F. H. Glanz, L. G. Kraft. CMAC: An associative neural network alternative to backpropagation. Proceedings of the IEEE, Special Issue on Neural Networks, 1990, Vol. 78, No 10, 1561–1567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabourin, C., Madani, K., Bruneau, O. (2008). Autonomous Gait Pattern for a Dynamic Biped Walking. In: Cetto, J.A., Ferrier, JL., Costa dias Pereira, J., Filipe, J. (eds) Informatics in Control Automation and Robotics. Lecture Notes Electrical Engineering, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79142-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79142-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79141-6

  • Online ISBN: 978-3-540-79142-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics