Skip to main content

Abstract

The concept of the modular organization of the organism is central to both classical experimental embryology and modern evolutionary developmental biology (EvoDevo). The latter discipline often ascribes homology, or the diversity of forms arising from the same module or combination of modules, to gene mutations or changes of gene regulation. This gene-centred atomistic view does not yield reliable criteria for homology, nor can it account convincingly for phenomena such as convergence and cooption. To understand the logic behind this plasticity, attention should be shifted from variation of existing characters to the preconditions for homology. This could be done by identifying the basic modules and their molecular regulation within the context of the most general, shared embryonic morphology. Mapping divergent embryonic trajectories onto different fates of these modules may allow us to throw light on the constrained sets of different, but related morphologies which can arise from different combinations of modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht-Buehler G (1990) In defense of “nonmolecular” cell biology. Int Rev Cytol 120:191–241

    PubMed  CAS  Google Scholar 

  2. Aldridge RJ, Xian-Guang H, Siveter DJ, Siveter DJ, Gabbott SE (2007) The systematics and phylogenetic relationships of vetulicolians. Palaeontology 50:131–168

    Google Scholar 

  3. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford

    Google Scholar 

  4. Arthur W (1997) The origin of animal body plans: a study in evolutionary developmental biology. Cambridge University Press, Cambridge

    Google Scholar 

  5. Arthur W (2001) Developmental drive: an important determinant of the direction of phenotypic evolution. Evol Dev 3:263–270

    Google Scholar 

  6. Ashe HL, Levine M (1999) Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398:427–431

    PubMed  CAS  Google Scholar 

  7. Balinsky BI (1965) An introduction to embryology. Saunders, Philadelphia

    Google Scholar 

  8. Ben-Tabou de-Leon S, Davidson EH (2006) Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network. Sci STKE. doi:10.1126/ stke.3612006pe47

    Google Scholar 

  9. Bolker JA, Raff RA (1996) Developmental genetics and traditional homology. BioEssays 18: 489–494

    PubMed  CAS  Google Scholar 

  10. Bowler PJ (1989) Evolution: the history of an idea. University of California Press, Berkeley

    Google Scholar 

  11. Brakefield PM (2006) Evo-devo and constraints on selection. Trends Ecol Evol 21:362–368

    PubMed  Google Scholar 

  12. Butler AB, Saidel WM (2000) Defining sameness: historical, biological, and generative homology. BioEssays 22:846–853

    PubMed  CAS  Google Scholar 

  13. Cerfontaine P (1906) Recherches sur le développement de l’Amphioxus. Arch Biol 22:229–418

    Google Scholar 

  14. Coffman JA, McCarthy JJ, Dickey-Sims C, Robertson AJ (2004) Oral-aboral axis specification in the sea urchin embryo: II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus. Dev Biol 273:160–171

    PubMed  CAS  Google Scholar 

  15. Conklin EG (1897) The embryology of Crepidula. J Morphol 13:3–209

    Google Scholar 

  16. Conway Morris S (1998a) The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, Oxford

    Google Scholar 

  17. Conway Morris S (1998b) Eggs and embryos from the Cambrian. BioEssays 20:676–682

    Google Scholar 

  18. Conway Morris S (2000) Evolution: bringing molecules into the fold. Cell 100:1–11

    CAS  Google Scholar 

  19. Conway Morris S (2003) The Cambrian “explosion” of metazoans and molecular biology: would Darwin be satisfied? Int J Dev Biol 47:505–515

    PubMed  Google Scholar 

  20. Darwin C (1871) The descent of man, and selection in relation to sex. Murray, London

    Google Scholar 

  21. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    PubMed  CAS  Google Scholar 

  22. Davidson EH, Rast JP, Oliveri P, Rasnick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    PubMed  CAS  Google Scholar 

  23. Dawydoff C (1928) Traité d’embryologie comparée des invertébrés. Masson, Paris

    Google Scholar 

  24. De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40

    PubMed  Google Scholar 

  25. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    PubMed  CAS  Google Scholar 

  26. Dong X, Donoghue PCJ, Cunningham JA, Liu J, Cheng H (2005) The anatomy, affinity, and phylogenetic significance of Markuelia. Evol Dev 7:468–482

    PubMed  Google Scholar 

  27. Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. In: Akam M, Holland P, Ingham P, Wray G (eds) The evolution of developmental mechanisms. Company of Biologists, Cambridge, pp 135–142

    Google Scholar 

  28. Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129: 3021–3032

    PubMed  CAS  Google Scholar 

  29. Ferrier DEK, Minguillón C, Holland PWH, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev 2:284–293

    PubMed  CAS  Google Scholar 

  30. Fry I (2000) The emergence of life on Earth: a historical and scientific overview. Rutgers University Press, New Brunswick

    Google Scholar 

  31. Furlong RF, Holland PWH (2002) Were vertebrates octoploid? Philos Trans R Soc Lond Ser B 357:531–544

    CAS  Google Scholar 

  32. Furlong RF, Holland PWH (2004) Polyploidy in vertebrate ancestry: Ohno and beyond. Biol J Linn Soc 82:425–430

    Google Scholar 

  33. Galis F, Sinervo B (2002) Divergence and convergence in early embryonic stages of metazoans. Contrib Zool 71:101–113

    Google Scholar 

  34. Galis F, van Alphen JJM, Metz JAJ (2001) Why five fingers? Evolutionary constraints on digit number. Trends Ecol Ev 16:637–646

    Google Scholar 

  35. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274

    PubMed  CAS  Google Scholar 

  36. Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    PubMed  Google Scholar 

  37. Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46:65–73

    PubMed  Google Scholar 

  38. Gemballa S, Weitbrecht GW, Saanchez-Villagra MR (2003) The myosepta in Branchiostoma lanceolatum (Cephalochordata): 3D reconstruction and microanatomy. Zoomorphology 122:169–179

    Google Scholar 

  39. Gilbert SF, Bolker JA (2001) Homologies of process and modular elements of embryonic construction. J Exp Zool B Mol Dev Evol 291:1–12

    CAS  Google Scholar 

  40. Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    PubMed  CAS  Google Scholar 

  41. Goodwin BC (1984) Changing from an evolutionary to a generative paradigm in biology. In: Pollard JW (ed) Evolutionary theory: paths into the future. Wiley, Chichester, pp 99–120

    Google Scholar 

  42. Gostling NJ, Donoghue PCJ, Bengtson S (2007) The earliest fossil embryos begin to mature. Evol Dev 9:206–207

    PubMed  Google Scholar 

  43. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  44. Grindley JC, Davidson DR, Hill RE (1995) The role of Pax-6 in eye and nasal development. Development 121:1433–1442

    PubMed  CAS  Google Scholar 

  45. Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, Berlin

    Google Scholar 

  46. Haeckel E (1868) Natürliche Schöpfungsgeschichte. Reimer, Berlin

    Google Scholar 

  47. Haeckel E (1874a) The gastraea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. Q J Microsc Sci 14:142–165

    Google Scholar 

  48. Haeckel E (1874b) Anthropogenie oder Entwickelungsgeschichte des Menschen. Englemann, Leipzig

    Google Scholar 

  49. Halder G, Callaerts P, Gehring WJ (1995) New perspectives on eye evolution. Curr Opin Gen Dev 5:602–609

    CAS  Google Scholar 

  50. Hallmann A (2006) Morphogenesis in the family Volvocaceae: different tactics for turning an embryo right-side out. Protist 157:445–461

    PubMed  Google Scholar 

  51. Holland LZ, Holland ND (2007) A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integr Comp Biol 47:360–372

    Google Scholar 

  52. Holland ND, Holland LZ (1999) Amphioxus and the utility of molecular genetic data for hypothesizing body part homologies between distantly related animals. Am Zool 39:630–640

    Google Scholar 

  53. Holland P (2006) My sister is a sea squirt? Heredity 96:424–425

    PubMed  CAS  Google Scholar 

  54. Holland PWH, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. In: Akam M, Holland P, Ingham P, Wray G (eds) The evolution of developmental mechanisms. Company of Biologists, Cambridge, pp 125–133

    Google Scholar 

  55. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    PubMed  CAS  Google Scholar 

  56. Jefferies RPS, Brown NA, Daley PEJ (1996) The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zool 77:101–122

    Article  Google Scholar 

  57. Jiménez-Delgado S, Crespo M, Permanyer J, Garcia-Fernàndez J, Manzanares M (2006) Evolutionary genomics of the recently duplicated amphioxus Hairy genes. Int J Biol Sci 2:66–72

    PubMed  Google Scholar 

  58. Kirk MM, Kirk DL (2004) Exploring germ-soma differentiation in Volvox. J Biosci 29:143–152

    PubMed  CAS  Google Scholar 

  59. Kowalevsky A (1866) Entwickelungsgeschichte der einfachen Ascidien. Mem Acad Imp Sci St Petersbourg VII Ser 10:1–19

    Google Scholar 

  60. Kowalevsky A (1867) Entwickelungsgeschichte des Amphioxus lanceolatus. Mem Acad Imp Sci St Petersbourg VII Ser 11:1–17

    Google Scholar 

  61. Love AC, Raff RA (2006) Larval ectoderm, organizational homology, and the origins of evolutionary novelty. J Exp Zool B Mol Dev Evol 306:18–34

    PubMed  Google Scholar 

  62. Madhavan M, Haynes TL, Frisch NC, Call MK, Minich CM, Tsonis PA, Del Rio-Tsonis K (2006) The role of Pax-6 in lens regeneration. Proc Natl Acad Sci USA 103:14848–14853

    PubMed  CAS  Google Scholar 

  63. Malakhov VV (2004) New ideas on the origin of bilateral animals. Russ J Mar Biol 30(Suppl 1): 22–33

    Google Scholar 

  64. Mallat J, Chen J (2003) Fossil sister group of craniates: predicted and found. J Morphol 258:1–31

    Google Scholar 

  65. Matsunaga E, Araki I, Nakamura H (2000) Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127:2357–2365

    PubMed  CAS  Google Scholar 

  66. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103:11195–11200

    PubMed  CAS  Google Scholar 

  67. Matus DQ, Pang K, Daly M, Martindale MQ (2007) Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 9:25–38

    PubMed  CAS  Google Scholar 

  68. McGhee JD (2000) Homologous tails? Or tales of homology? BioEssays 22:781–785

    PubMed  CAS  Google Scholar 

  69. Meaburn KJ, Misteli T (2007) Chromosome territories. Nature 445:379–381

    PubMed  CAS  Google Scholar 

  70. Minelli A (1998) Molecules, developmental modules, and phenotypes: a combinatorial approach to homology. Mol Phylogen Evol 9:340–347

    CAS  Google Scholar 

  71. Minelli A (2000) Limbs and tail as evolutionarily diverging duplicates of the main body axis. Evol Dev 2:157–165

    PubMed  CAS  Google Scholar 

  72. Minelli A (2003) The development of animal form: ontogeny, morphology, and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  73. Minguillón C, Ferrier DEK, Cebrián C, Garcia-Fernàndez J (2002) Gene duplication in the prototypical cephalochordate amphioxus. Gene 287:121–128

    PubMed  Google Scholar 

  74. Minguillón C, Jiménez-Delgado S, Panopoulou G, Garcia-Fernàndez J (2003) The amphioxus Hairy family: differential fate after duplication. Development 130:5903–5914

    PubMed  Google Scholar 

  75. Minguillón C, Gardenyes J, Serra E, Filipe L, Castro C, Hill-Force A, Holland PWH, Amemiya CT, Garcia-Fernàndez J (2005) No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 1:19–23

    PubMed  Google Scholar 

  76. Müller GB (2003) Homology: the evolution of morphological organization. In: Müller GB, Newman SA (eds) Origination of organismal form. Beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, pp 51–69

    Google Scholar 

  77. Müller GB, Newman SA (1999) Generation, integration, autonomy: three steps in the evolution of homology. In: Homology, Novartis Foundation Symposium 222. Wiley, Chichester, pp 65–79

    Google Scholar 

  78. Müller GB, Wagner GP (1996) Homology, Hox genes, and developmental integration. Am Zool 36:4–13

    Google Scholar 

  79. Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128:3521–3531

    PubMed  CAS  Google Scholar 

  80. Newman SA (2005) The pre-Mendelian, pre-Darwinian world: Shifting relations between genetic and epigenetic mechanisms in early multicellular evolution. J Biosci 30:75–85

    PubMed  CAS  Google Scholar 

  81. Newman SA, Müller GB (2000) Epigenetic mechanisms of character origination. J Exp Zool B Mol Dev Evol 288:304–317

    CAS  Google Scholar 

  82. Newman SA, Forgacs G, Müller GB (2006) Before programs: the physical origination of multicellular forms. Int J Dev Biol 50:289–299

    PubMed  CAS  Google Scholar 

  83. Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121:526–541

    PubMed  CAS  Google Scholar 

  84. Northcutt RG (2005) The new head hypothesis revisited. J Exp Zool B Mol Dev Evol 304:274–297

    Google Scholar 

  85. Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28

    PubMed  CAS  Google Scholar 

  86. Oda-Ishii I, Bertrand V, Matsuo I, Lemaire P, Saiga H (2005) Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132:1663–1674

    Google Scholar 

  87. Ohno S (1996) The notion of the Cambrian pananimalia genome. Proc Natl Acad Sci USA 93:8475–8478

    PubMed  CAS  Google Scholar 

  88. Ospovat D (1981) The development of Darwin’s theory. Natural history, natural theology, and natural selection, 1838–1859. Cambridge University Press, Cambridge

    Google Scholar 

  89. Owen R (1843) Lectures on the comparative anatomy and physiology of the invertebrate animals. Longman, Brown, Green and Longmans, London

    Google Scholar 

  90. Owen R (1866) The anatomy of vertebrates, vol 1. Longmans, Green, London

    Google Scholar 

  91. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    PubMed  CAS  Google Scholar 

  92. Raff RA (1996) The shape of life. Genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  93. Raineri M (1998) Proposta di una nuova classificazione di Tunicati e Cefalocordati come Gastroneuralia. Implicazioni filogenetiche e cenni storici sulle origini del concetto di Protocordati. Ann Mus Civ St Nat G Doria 92:1–83

    Google Scholar 

  94. Raineri M (2006) Are protochordates chordates? Biol J Linn Soc 87:261–284

    Google Scholar 

  95. Reed RD, Chen P-H, Nijhout FH (2007) Cryptic variation in butterfly eyespot development: the importance of sample size in gene expression studies. Evol Dev 9:2–9

    PubMed  CAS  Google Scholar 

  96. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196:91–106

    PubMed  CAS  Google Scholar 

  97. Roux W (1895) Gesammelte Abhandlungen über Entwickelungsmechanik der Organismen. Engelmann, Leipzig

    Google Scholar 

  98. Ruppert EE (2005) Key characters uniting hemichordates and chordates: homologies or homoplasies? Can J Zool 83:8–23

    Google Scholar 

  99. Saint-Hilaire ÉG (1818) Philosophie anatomique. Méquignon-Marvis, Paris

    Google Scholar 

  100. Schierenberg E (2001) Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. BioEssays 23:841–847

    PubMed  CAS  Google Scholar 

  101. Schubert M, Escriva H, Xavier-Neto J, Laudet V (2006) Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 21:269–277

    PubMed  Google Scholar 

  102. Shu D-G (2003) A palaeontological perspective of vertebrate origin. Chin Sci Bull 48:725–735

    Google Scholar 

  103. Shu D-G, Conway Morris S, Zhang X-L, Hu S-X, Chen L, Han J, Zhu M, Li Y, Chen L-Z (1999) Lower Cambrian vertebrates from south China. Nature 402:42–46

    CAS  Google Scholar 

  104. Shu D-G, Conway Morris S, Han J, Zhang Z-F, Yasul K, Janvier P, Chen L, Zhang X-L, Liu J-N, Li Y, Liu H-Q (2003) Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421:526–529

    PubMed  CAS  Google Scholar 

  105. Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528–10532

    PubMed  CAS  Google Scholar 

  106. Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven

    Google Scholar 

  107. Stern CD (2006) Evolution of the mechanisms that establish the embryonic axes. Curr Opin Genet Dev 16:413–418

    PubMed  CAS  Google Scholar 

  108. Tung TC, Wu SC, Tung YYF (1962) The presumptive areas of the egg of amphioxus. Sci Sin 11:629–644

    Google Scholar 

  109. Vermeji GJ (2006) Historical contingency and the purported uniqueness of evolutionary innovations. Proc Natl Acad Sci USA 103:1804–1809

    Google Scholar 

  110. Vienne A, Pontarotti P (2006) Metaphylogeny of 82 gene families sheds a new light on chordate evolution. Int J Biol Sci 2:32–37

    PubMed  CAS  Google Scholar 

  111. von Baer KE (1828) Entwickelungsgeschichte der Tiere. Borntrager, Königsberg

    Google Scholar 

  112. von Kölliker A (1864) Über die Darwin’sche Schöpfungstheorie. Zeit Wiss Zool 14:174–186

    Google Scholar 

  113. Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36–43

    Google Scholar 

  114. Wagner GP, Schwenk K (2000) Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. In: Hecht MK et al (eds) Evolutionary biology, vol 31. Kluwer/Plenum, New York, pp 155–217

    Google Scholar 

  115. Wright BE (2000) A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol 182:2993–3001

    PubMed  CAS  Google Scholar 

  116. Zhang X, Rowan S, Yue Y, Heaney S, Pan Y, Brendolan A, Selleri L, Maas RL (2006) Pax6 is regulated by Meis and Pbx homoproteins during pancreatic development. Dev Biol 300:348–357

    Google Scholar 

  117. Zhang X-G, Hou X-G (2004) Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis. Evol Biol 17:1162–1166

    Google Scholar 

  118. Zimmer C (2000) In search of vertebrate origins: beyond brain and bone. Science 287:1576–1579

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raineri, M. (2008). Old and New Concepts in EvoDevo. In: Pontarotti, P. (eds) Evolutionary Biology from Concept to Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78993-2_6

Download citation

Publish with us

Policies and ethics