Skip to main content

DW-MRI Assessment of Treatment Response to Minimally Invasive Therapy

  • Chapter
Diffusion-Weighted MR Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2031 Accesses

Summary

Minimally invasive interventional oncology therapies consist of various therapeutic catheter-based (such as transcatheter arterial chemoembolization) and percutaneous ablative approaches (such as radiofrequency ablation) using imaging for guidance to treat solid malignancies, and have recently emerged as a major therapeutic alternative against cancer. Monitoring tumour response to these therapies is currently performed by measuring changes in tumour size with contrast-enhanced computed tomography (CT) or magnetic resonance (MR) imaging. However, morphological tumour changes occur relatively late in the course of therapy, while functional changes can occur prior to tumour size changes. Since minimally invasive therapies cause tumour cell membrane destruction and/or obliteration of tumour micro vessels, with subsequent alterations in the microscopic movement of water molecules, DW-MRI seems to be a potential non-invasive tool for measuring early functional tumour response to such therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beland MD, Dupuy DE, Mayo-Smith WW (2005) Percutaneous cryoablation of symptomatic extraabdominal metastatic disease: preliminary results. Am J Roentgenol 184: 926–930

    Google Scholar 

  • Brown DB, Geschwind J-FH, Soulen MC, et al (2006) Society of interventional radiology position statement on chemoem-bolization of hepatic malignancies. J Vasc Interv Radiol 17: 217–223

    Article  PubMed  Google Scholar 

  • Buijs M, Kamel IR, Vossen JA et al (2007) Assessment of meta-static breast cancer response to chemoembolization with contrast agent enhanced and diffusion-weighted MR imaging. J Vasc Interv Radiol 18: 957–963

    Article  PubMed  Google Scholar 

  • Buijs M, Vossen JA, Hong K et al (2008) Chemoembolization of hepatic metastases from ocular melanoma: assessment of response with contrast-enhanced and diffusion-weighted MRI. AJR Am J Roentgenol 191: 285–289

    Article  PubMed  Google Scholar 

  • Callstrom MR, Atwell TD, Charboneau JW et al (2006) Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology 241: 572580

    Article  Google Scholar 

  • Chen CY (2006) Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants–initial experience. Radiology 239: 448–456

    Article  PubMed  Google Scholar 

  • Chen J, Daniel BL, Diederich CJ et al (2008) Monitoring prostate thermal therapy with diffusion-weighted MRI. Magn Reson Med 59: 1365–1372

    Article  PubMed  Google Scholar 

  • Chiras J, Adem C, Vallee J-Nl et al (2004) Selective intra-arterial chemoembolization of pelvic and spine bone metastases. Eur Radiol 14: 1774

    Article  PubMed  Google Scholar 

  • Deng J, Miller FH, Rhee TK et al (2006a) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17: 1195–1200

    Article  Google Scholar 

  • Deng J, Rhee TK, Sato KT et al (2006b) In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest Radiol 41: 410–414

    Article  Google Scholar 

  • Geschwind JF, Artemov D, Abraham S et al (2000) Chemoem-bolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol 11: 1245–1255

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SN, Charboneau JW, Dodd GD III et al (2003) Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology 228: 335–345

    Article  PubMed  Google Scholar 

  • Goshima S, Kanematsu M, Kondo H et al (2008) Evaluating local hepatocellular carcinoma recurrence post- transcatheter arterial chemoembolization: is diffusion-weighted MRI reliable as an indicator? J Magn Reson Imaging 27: 834–839

    Article  PubMed  Google Scholar 

  • Jacobs MA (2005) Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery–preliminary study. Radiology 236: 196–203

    Article  PubMed  Google Scholar 

  • Jindal G, Friedman M, Locklin J et al (2006) Palliative radiofrequency ablation for recurrent prostate cancer. Cardiovasc Intervent Radiol 29: 482–485

    Article  PubMed  Google Scholar 

  • Kamel I, Liapi E, Reyes D et al (2009) Unresectable hepatocel-lular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology; 250: 466–73.

    Article  PubMed  Google Scholar 

  • Kamel IR, Bluemke DA, Eng J et al (2006) The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 17: 505–512

    Article  PubMed  Google Scholar 

  • Kamel IR, Bluemke DA, Ramsey D et al (2003) Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. Am J Roentgenol 181: 708–710

    Google Scholar 

  • Kamel IR, Liapi E, Reyes DK et al (2009) Unresectable hepato-cellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 250: 466–473

    Article  PubMed  Google Scholar 

  • Kamel IR, Reyes DK, Liapi E et al (2007) Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 18: 49–56

    Article  PubMed  Google Scholar 

  • Kim CK, Park BK, Lee HM et al (2008) MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. Am J Roentgenol 190: 1180–1186

    Article  Google Scholar 

  • Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188: 1622–1635

    Article  PubMed  Google Scholar 

  • Konya A, Van Pelt CS, Wright KC (2004) Ethiodized oil-ethanol capillary embolization in rabbit kidneys: temporal histopathologic findings. Radiology 232: 147–153

    Article  PubMed  Google Scholar 

  • Kovacs AF (2005) Chemoembolization using Cisplatin crystals as neoadjuvant treatment of oral cancer. Cancer Biother Radiopharm 20: 267–279

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168: 497–505

    PubMed  Google Scholar 

  • Liapi E, Georgiades CC, Hong K et al (2007) Transcatheter arterial chemoembolization: current technique and future promise. Tech Vasc Interv Radiol 10: 2–11

    Article  PubMed  Google Scholar 

  • Liapi E, Geschwind JF, Vossen JA et al (2008) Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol 190: 67–73

    Article  PubMed  Google Scholar 

  • Liapi E, Kamel IR, Bluemke DA et al (2005) Assessment of response of uterine fibroids and myometrium to embolization using diffusion-weighted echoplanar MR imaging. J Comput Assist Tomogr 29: 83–86

    Article  PubMed  Google Scholar 

  • Mayo-Smith WW, Dupuy DE (2004) Adrenal neoplasms: CT-guided radiofrequency ablation–preliminary results. Radiology 231: 225–230

    Article  PubMed  Google Scholar 

  • Namimoto T, Yamashita Y, Sumi S et al (1997) Focal liver masses: characterization with diffusion-weighted echoplanar MR imaging. Radiology 204: 739–744

    CAS  PubMed  Google Scholar 

  • Ohira T, Okuma T, Matsuoka T et al (2009) FDG-MicroPET and diffusion-weighted MR image evaluation of early changes after radiofrequency ablation in implanted VX2 tumors in rabbits. Cardiovasc Intervent Radiol 32: 114–120

    Article  PubMed  Google Scholar 

  • Rhee TK, Naik NK, Deng J et al (2008) Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol 19: 1180–1186

    Article  PubMed  Google Scholar 

  • Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217: 331–345

    CAS  PubMed  Google Scholar 

  • Susini T, Nori J, Olivieri S et al (2007) Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol 104: 304–310

    Google Scholar 

  • Tanaka R, Horikoshi H, Nakazato Y et al (2009) Magnetic resonance imaging in peripheral lung adenocarcinoma: correlation with histopathologic features. J Thorac Imaging 24: 4–9

    Article  PubMed  Google Scholar 

  • Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92: 205–216

    Article  CAS  PubMed  Google Scholar 

  • Thoeny HC, De Keyzer F, Chen F et al (2005) Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 234: 756–764

    Article  PubMed  Google Scholar 

  • Turner R (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177: 407–414

    CAS  PubMed  Google Scholar 

  • Turner R (1991) Echo-planar imaging of diffusion and perfusion. Magn Reson Med 19: 247–253

    Article  CAS  PubMed  Google Scholar 

  • Vogl TJ, Wetter A, Lindemayr S et al (2005) Treatment of unresectable lung metastases with transpulmonary chemoem-bolization: preliminary experience. Radiology 234: 917–922

    Article  PubMed  Google Scholar 

  • Vossen JA, Kamel IR, Buijs M et al (2008) Role of functional magnetic resonance imaging in assessing metastatic leiomyosarcoma response to chemoembolization. J Comput Assist Tomogr 32: 347–352

    Article  PubMed  Google Scholar 

  • Youn BJ, Chung JW, Son KR et al (2008) Diffusion-weighted MR: therapeutic evaluation after chemoembolization of VX-2 carcinoma implanted in rabbit liver. Acad Radiol 15: 593–600

    Article  PubMed  Google Scholar 

  • Yuan YH, Xiao EH, Liu JB et al (2007) Characteristics and pathological mechanism on magnetic resonance diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J Gastroenterol 13: 5699–5706

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liapi, E., Kamel, I.R. (2010). DW-MRI Assessment of Treatment Response to Minimally Invasive Therapy. In: Koh, D.M., Thoeny, H.C. (eds) Diffusion-Weighted MR Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78576-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78576-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78575-0

  • Online ISBN: 978-3-540-78576-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics