Skip to main content

Image Processing

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

Image processing is a crucial element of modern digital mammography. Optimizing mammogram presentation may lead to more efficient reading and improved diagnostic performance. Despite that the effects of image processing are often much larger than those of acquisition parameter settings, little is known about how image processing can be optimized. Experts agree that comparison of features in various mammographic views is very important. This issue must be addressed by processing. Variation of image presentation across views and subsequent mammograms should be minimized. The dynamic range of electronic displays is limited. Therefore, processing techniques should be designed to limit the dynamic range of mammograms. This can effectively be done by applying peripheral enhancement in the uncompressed tissue region near the projected skin—air interface. Adaptive contrast enhancement can be applied to enhance micro-calcifications and dense tissue in the interior of the mammogram. Mammogram processing should be aimed at displaying all relevant information in good contrast simultaneously, as human interaction to manipulate contrast during reading is too time-consuming to be applied on a regular basis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baydush AH, Floyd CE Jr (2000) Improved image quality in digital mammography with image processing. Med Phys 27(7):1503–1508

    Article  PubMed  CAS  Google Scholar 

  • Burnside ES, Sickles EA, Sohlich RE et al (2002) Differential value of comparison with previous examinations in diagnostic versus screening mammography. AJR Am J Roentgenol 179(5):1173–1177

    PubMed  Google Scholar 

  • Byng JW, Critten J P, Yaffe MJ (1997) Thickness-equalization processing for mammographic images. Radiol 203:564–568

    CAS  Google Scholar 

  • Cole EB, Pisano ED, Zeng D et al (2005) The effects of gray scale image processing on digital mammography interpretation performance. Acad Radiol 12(5):585–595

    Article  PubMed  Google Scholar 

  • Heinlein P, Drexl J, Schneider W (2003) Integrated wavelets for enhancement of microcalcifications in digital mammography. IEEE Trans Med Imaging 22(3):402–413

    Article  PubMed  Google Scholar 

  • Hemminger BM, Zong S, Muller KE et al (2001) Improving the detection of simulated masses in mammograms through two different image-processing techniques. Acad Radiol 8(9):845–855

    Article  PubMed  CAS  Google Scholar 

  • Highnam R, Brady M (1999) Mammographic image analysis, 1st edn. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Book  Google Scholar 

  • Kallergi M, Clarke LP, Qian W et al (1996) Interpretation of calcifications in screen/film, digitized, and wavelet-enhanced monitor-displayed mammograms: a receiver operating characteristic study. Acad Radiol 3(4):285–293

    Article  PubMed  CAS  Google Scholar 

  • Kallergi M, Heine JJ, Berman CG et al (2004) Improved interpretation of digitized mammography with wavelet processing: a localization response operating characteristic study. AJR Am J Roentgenol 182(3):697–703

    PubMed  Google Scholar 

  • Laine AF, Schuler S, Fan J et al (1994) Mammographic feature enhancement by multiscale analysis. IEEE Trans Med Imaging 13(4):725–740

    Article  PubMed  CAS  Google Scholar 

  • Pisano ED, Chandramouli J, Hemminger BM et al (1997) Does intensity windowing improve the detection of simulated calcifications in dense mammograms. J Digit Imaging 10 (2):79–84

    Article  PubMed  CAS  Google Scholar 

  • Pisano ED, Cole EB, Hemminger BM et al (2000a) Image processing algorithms for digital mammography: a pictorial essay. Radiographics 20(5):1479–1491

    CAS  Google Scholar 

  • Pisano ED, Cole EB, Major S et al (2000b) Radiologists' preferences for digital mammographic display. The international digital mammography development group. Radiology 216(3):820–830

    CAS  Google Scholar 

  • Pizer SM, Johnston RE, Rogers DC et al (1987) Effective presentation of medical images on an electronic display station. Radiographics 7(6):1267–1274

    PubMed  CAS  Google Scholar 

  • Roelofs AA, Karssemeijer N, Wedekind N et al (2007) Importance of comparison of current and prior mammo-grams in breast cancer screening. Radiology 242(1):70–77

    Article  PubMed  Google Scholar 

  • Snoeren PR, Karssemeijer N (2004) Thickness correction of mammographic images by means of a global parameter model of the compressed breast. IEEE Trans Med Imaging 23(7):799–806

    Article  PubMed  Google Scholar 

  • Snoeren PR, Karssemeijer N (2005) Thickness correction of mammographic images by anisotropic filtering and interpolation of dense tissue. In: Fitzpatrick J, Reinhardt J (eds) SPIE medical imaging: image processing, vol. 5747, pp 1521–1527

    Google Scholar 

  • Snoeren PR, Karssemeijer N (2007) Gray-scale and geometric registration of full-field digital and film-screen mammo-grams. Med Image Anal 11(2):146–156

    Article  PubMed  Google Scholar 

  • Thurfjell MG, Vitak B, Azavedo E et al (2000) Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms. Acta Radiol 41(1):52–56

    Article  PubMed  CAS  Google Scholar 

  • van Engeland S, Snoeren P, Karssemeijer N et al (2003) Optimized perception of lesion growth in mammograms using digital display. In: Chakraborty D, Krupinski E (eds) SPIE medical imaging: image perception. Observer Performance, and Technology Assessment, vol. 5034, pp 25–31

    Google Scholar 

  • van Engeland S, Snoeren PR, Huisman H et al (2006) Volumetric breast density estimation from full-field digital mammo-grams. IEEE Trans Med Imaging 25(3):273–282

    Article  PubMed  Google Scholar 

  • Veldkamp WJ, Thijssen MA, Karssemeijer N (2003) The value of scatter removal by a grid in full-field digital mammography. Med Phys 30(7):1712–1718

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karssemeijer, N., Snoeren, P.R. (2010). Image Processing. In: Bick, U., Diekmann, F. (eds) Digital Mammography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78450-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78450-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78449-4

  • Online ISBN: 978-3-540-78450-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics