Skip to main content

Reactive, Metabolic, and Tumor-Like Lesions of Bone

  • Chapter
Imaging of Bone Tumors and Tumor-Like Lesions

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3159 Accesses

Key Points

• Metabolic bone diseases are not included in the WHO classification of bone tumors. Metabolic bone disease conventionally includes osteoporosis, osteomalacia, hyperparathyroidism, and Paget’s disease.

• Osteoporosis is characterized by fractures that in the vertebrae and pelvis could be mistaken for a more sinister disease, such as metastases. Recognizing their patterns on the different imaging modalities would permit the correct diagnosis to be made and prevent the patient from being overstaged and inappropriately investigated. Exuberant callus formation in OI type V should not be mistaken for sarcoma.

• Oncogenic osteomalacia is a rare clinicopathological syndrome characterized by a triad of severe hypophosphatemia, hyperphosphaturia, and osteomalacia secondary to a neoplasm. The condition is challenging to diagnose, as the patient most often presents with symptoms of osteomalacia, and the primary mesenchymal tumor may be small and often asymptomatic. However, correct diagnosis is particularly gratifying as surgical removal of the offending tumor can lead to a dramatic reversal of osteomalacia. Amyloid deposition in patients on long-term hemodialysis can lead to periarticular osteolytic lesions, and these tumor-like osseous lesions are called amyloidomas of the bone. With the increased life span of hemodialysis patients, radiologists are more likely to encounter brown tumors as well as musculoskeletal manifestations of β2-microglobulinassociated amyloidosis, including lytic osseous lesions (amyloidomas) and renal spondyloarthropathy, and these conditions should not be mistaken for primary or secondary bone neoplasms.

• Florid reactive periostitis (FRP) and bizarre parosteal osteochondromatous proliferation (BPOP) represent opposing ends of a spectrum of reactive lesions that mimic sarcoma. BPOP, also called Nora’s lesion, has been defined as a “well-marginated mass of heterotopic mineralization arising from the periosteal aspect of an intact cortex, without medullary changes.” The radiological appearances of these benign entities are often mistaken for more ominous pathologies, most commonly osteogenic osteosarcoma and chondrosarcoma and also osteomyelitis. Familiarity with the entity of FRP will allow radiologists to provide the correct diagnosis and prevent unnecessary antibiotic therapy or aggressive, early surgery. Close clinical and radiological follow-up of FRP usually shows conversion to BPOP.

• SAPHO is an acronym for a syndrome comprising synovitis, acne, pustulosis, hyperostosis, and osteitis. The radiologist plays a central role in the early, accurate, and definitive diagnosis of SAPHO syndrome. Awareness of SAPHO syndrome is important to facilitate differentiation from other entities with similar radiological presentation, but dramatically different progression, treatment, and prognosis. These entities include malignancies such as round cell tumors like lymphoma and Ewing’s sarcoma, metastases, and also osteomyelitis and Paget’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschinberg LC, Solomon LM, Zeis PM et al. (1977) Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J Pediatr 91:56– 60

    Article  PubMed  CAS  Google Scholar 

  • Auethavekiat P, Roberts JR, Biega TJ et al. (2005) CASE 3. Oncogenic osteomalacia associated with hemangiopericytoma localized by octreotide scan. J Clin Oncol 23:3626–3628

    Article  PubMed  Google Scholar 

  • Ballara SC, Siraj QH, Maini RN et al. (1999) Sustained response to doxycycline therapy in two patients with SAPHO syndrome. Arthritis Rheum 42:819–821

    Article  PubMed  CAS  Google Scholar 

  • Banker BQ, Girvin JP (1971) The ultrastructural features of the mammalian muscle spindle. J Neuropathol Exp Neurol 30:155–195

    Article  PubMed  CAS  Google Scholar 

  • Battle WH, Shattock HG (1908) A remarkable case of diffuse cancellous osteoma of the femur following a fracture. Proc Roy Soc Med 1:82–102

    Google Scholar 

  • Baur A, Stabler A, Arbogast S et al. (2002) Acute osteoporotic and neoplastic vertebral compression fractures: Fluid sign at MR Imaging. Radiology 225:730–735

    Article  PubMed  Google Scholar 

  • Baur A, Stabler A, Bruning R et al. (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  • Blake SP, Connors AM (2004) Sacral insufficiency fracture. BJR 77:891–896

    Article  PubMed  CAS  Google Scholar 

  • Boutin RD, Renick D (1998) The SAPHO syndrome: An evolving concept for unifying several idiopathic disorders of bone and skin. AJR 170:585–594

    PubMed  CAS  Google Scholar 

  • Brenner RE, Vetter U, Nerlich A et al. (1989) Biochemical analysis of callus tissue in osteogenesis imperfecta type IV. Evidence for transient overmodification in collagen types I and III. J Clin Invest 84:915–921

    Article  PubMed  CAS  Google Scholar 

  • Cai Qiang, Hodgson SF, Kao PC et al. (1994) Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. New Engl J Med 330(23):1645–1649

    Article  Google Scholar 

  • Campistol JM, Skinner M (1993) β2-Microglobulin amyloidosis: An overview. Semin Dialysis 6:117

    Article  Google Scholar 

  • Carpenter TO (2003) Oncogenic osteomalacia–A complex dance of factors. NEJM 348:1705–1708

    Article  PubMed  Google Scholar 

  • Castillo M, Arbelaez A, Smith JK et al. (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 21:948–953

    PubMed  CAS  Google Scholar 

  • Cheung MS, Michel Azouz E, Glorieux FH et al. (2008) Hyperplastic callus formation in osteogenesis imperfecta type V: follow-up of three generations over 10 years. Skeletal Radiol 37:465–467

    Article  PubMed  Google Scholar 

  • Chua SC, O’Connor SR, Wang WL et al. (2008) Solitary plasmacytoma of bone with oncogenic osteomalacia: recurrence of tumour confirmed by PET/CT. BJR 81:e110–e114

    Article  PubMed  CAS  Google Scholar 

  • Cloft HJ, Quint DJ, Markert JM et al. (1994) Primary osseous amyloidoma causing spinal cord compression. AJNR Am J Neuroradiol 16:1152–1154

    Google Scholar 

  • Clunie GPR, Fox PE, Stamp TCB (2000) Four cases of acquired hypophosphataemic (‘‘oncogenic’’) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatol 39:1415–1421

    Article  CAS  Google Scholar 

  • Cuénod CA, Laredo JD, Chevret S et al. (1996) Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 199:541–549

    PubMed  Google Scholar 

  • Davies AM, Marino AJ, Evans N et al. (1999) SAPHO syndrome: 20-year follow-up. Skeletal Radiol 28:159–162

    Article  PubMed  CAS  Google Scholar 

  • Dhondt E, Oudenhoven L, Khan S et al. (2006) Nora’s lesion, a distinct radiological entity? Skeletal Radiol 35:497–502

    Article  PubMed  CAS  Google Scholar 

  • Dobrocky I, Seidl G, Grill F (1999) MRI and CT features of hyperplastic callus in osteogenesis imperfecta tarda. Eur Radiol 9:665–668

    Article  PubMed  CAS  Google Scholar 

  • Earwaker JWS, Cotten A (2003) SAPHO: syndrome or concept? Imaging findings. Skeletal Radiol 32:311–327

    PubMed  CAS  Google Scholar 

  • Finelli DA (2001) Diffusion-weighted imaging of acute vertebral compressions: Specific diagnosis of benign versus malignant pathologic fractures. AJNR Am J Neuroradiol 22(2):366–372

    Google Scholar 

  • Finiels H, Finiels PJ, Jacquot JM et al. (1997) Fractures of the sacrum caused by bone insufficiency. Meta-analysis of 508 cases. Presse Med 26:1568–1573 (English abstract)

    PubMed  CAS  Google Scholar 

  • Folpe AL, Fanburg-Smith JC, Billings SD et al. (2004) Most osteomalacia-associated mesenchymal tumours are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30

    Article  PubMed  Google Scholar 

  • Glorieux FH, Rauch F,Plotkin H et al. (2000) Type V osteogenesis imperfecta: A new form of brittle bone disease. J Bone Miner Res 15:1650–1658

    Article  PubMed  CAS  Google Scholar 

  • Grulois V, Buysschaert I, Schoenaers J, Debruyne F, Delaere P, Vander Poorten V (2005) Brown tumour: presenting symptom of primary hyperparathyroidism. B-ENT 1:191–195

    PubMed  CAS  Google Scholar 

  • Hasegawa T, Shimoda T, Yokkoyama R et al. (1999) Intracortical osteoblastic osteosarcoma with oncogenic rickets. Skeletal Radiol 28:41–45

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Takami M, Kajikawa M et al. (2008) A case of multiple skeletal lesions of brown tumors, mimicking carcinoma metastases. Arch Orthop Trauma Surg 128:149–154

    Article  PubMed  Google Scholar 

  • Iversen E, Hassager C, Christiansen C (1989) The effect of hemiplegia on bone mass and soft tissue body composition. Acta Neurol Scand 79:155–159

    Article  PubMed  CAS  Google Scholar 

  • Jordan KG, Telepak RJ, Spaeth J (1993) Detection of hypervascular brown tumors on three-phase bone scan. J Nucl Med 34:2188–2190

    PubMed  CAS  Google Scholar 

  • Jacob JJ, Finny P, Thomas M et al. (2007) Oncogenic osteomalacia. JAPI 55:231–233

    PubMed  CAS  Google Scholar 

  • Joyce JM, Keats TE (1986) Disuse osteoporosis: Mimic of neoplastic disease. Skeletal Radiol 15(2):129–132

    Article  PubMed  CAS  Google Scholar 

  • Jung HS, Jee WH, Mc Cauley TR et al. (2003) Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 23:179–187

    Article  PubMed  Google Scholar 

  • Kocher MS, Gebhardt MC, Jaramillo D et al. (2000) Multiple lytic skeletal lesions and hypercalcemia in a 13-year-old girl. Clin Orthop Relat Res 374:298–302

    Article  PubMed  Google Scholar 

  • Lamont EB, Cavaghan MK, Brockstein BE (1999) Oncogenic osteomalacia as a harbinger of recurrent osteosarcoma. Sarcoma 3:95–99

    Article  PubMed  CAS  Google Scholar 

  • Leone A, Sundaram M, Cerase A et al. (2001) Destructive spondyloarthropathy of the cervical spine in long-term hemodialyzed patients: a 5-year clinical radiological prospective study. Skeletal Radiol 30:431–441

    Article  PubMed  CAS  Google Scholar 

  • Leslie W, Nance P (1993) Dissociated hip and spine demineralization: A specific finding in spinal cord injury. Arch Phys Med Rehabil 74:960–964

    PubMed  CAS  Google Scholar 

  • Ma CX, Lacy MQ, Rompala JF, Dispenzieri A et al. (2004) Acquired Fanconi syndrome is an indolent disorder in the absence of overt multiple myeloma. Blood 104:40–42

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Sakuma H, Maier SE et al. (2003) Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR 181:1203–1209

    PubMed  Google Scholar 

  • Marcelli C, Pérennou D, Cyteval C et al. (1996) Amyloidosis-related cauda equina compression in long-term hemodialysis patients. Three case reports. Spine 21:381–385

    Article  PubMed  CAS  Google Scholar 

  • Martini A, Notarangeleno LD, Barberis L et al. (1983) Acquired vitamin-D resistance rickets caused by prolonged latency in appearance of bone tumour. Am J Dis Child 137:1025–1026

    Google Scholar 

  • McCarthy B, Dorfman HD (1990) Pubic osteolysis: a benign lesion of the pelvis closely mimicking a malignant neoplasm. Clin Orthop Relat Res 251:300–307

    PubMed  Google Scholar 

  • Messiaen T, Deret S, Mougenot B et al. (2000) Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine (Baltimore) 79:135–154

    Article  CAS  Google Scholar 

  • Minemura K, Ichikawa K, Itoh N et al. (2001) IgA-kappa type multiple myeloma affecting proximal and distal renal tubules. Intern Med 40:931–935

    Article  PubMed  CAS  Google Scholar 

  • Moulopoulos LA, Yoshimistu K, Johnston DA et al. (1996) MR prediction of benign and malignant vertebral compression fractures. J Magn Reson Imaging 6:667–674

    Article  PubMed  CAS  Google Scholar 

  • Narvaez J, Domingo-Domenech E, Narvaez JA et al. (2005) Acquired hypophosphatemic osteomalacia associated with multiple myeloma. Joint Bone Spine 72:424–426

    Article  PubMed  Google Scholar 

  • Nilsson M,Domanski HA,Mertens F et al. (2004).Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre arosteal osteochondromatous proliferation. Hum Pathol 35:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Nomura G, Koshino Y, Morimoto H et al. (1981) Vitamin D resistant hypophosphatemic osteomalacia associated with osteosarcoma of the mandible: report of a case. Jpn J Med 21:35–39

    Google Scholar 

  • Nora Dahlin DC, Beabout JW (1983) Bizarre parosteal osteochondromatous proliferations of hand and feet. Am J Surg Pathol 7:245–250

    Article  Google Scholar 

  • O’Connor AR, Whittaker C (2006) Radiologic findings that mimic malignancy. AJR 187:W357–W364

    Article  PubMed  Google Scholar 

  • Ogura E, Kageyama K, Fukumoto S et al. (2008) Development of tumor-induced osteomalacia in a subcutaneous tumor, defined by venous blood sampling of fibroblast growth factor-23. Intern Med 47:637–641

    Article  PubMed  Google Scholar 

  • Ouri H, Ishikawa A, Tsuchiya T, Ogino T (2002) Magnetic resonance imaging characteristics of bizarre parosteal osteochondromatous proliferation of the hand. A case report. J Hand Surg 27:1104–1108

    Article  Google Scholar 

  • Park YK, Unni KK, Beabout JW et al. (1994) Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions. J Korean Med Sci 9:289–98

    PubMed  CAS  Google Scholar 

  • Pawar S, Kay CJ, Anderson HH et al. (1982) Primary amyloidoma of the spine. J Comput Assist Tomogr 6:1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Peh WC, Khong PL, Yin Y et al. (1996) Imaging of pelvic insufficiency fractures. Radiographics 16:335–348

    PubMed  CAS  Google Scholar 

  • Pollack JA, Schiller AL, Crawford JD (1973) Rickets and myopathy cured by removal of a non-ossifying fibroma of bone. Pediatrics 52:364–372

    PubMed  CAS  Google Scholar 

  • Popotvtzer MM (1981) Tumor-induced hypophosphatemic osteomalacia: evidence for a phosphatur ic cyclic AMP-independent action of tumor extract. Clin Res 29:418A

    Google Scholar 

  • Rao DS, Parfitt AM, Villanueva AR et al. (1987) Hypophosphatemic osteomalacia and adult Fanconi syndrome due to light-chain nephropathy. Another form of oncogenous osteomalacia. Am J Med 82:333–338

    Article  PubMed  CAS  Google Scholar 

  • Resnick D (2002) Parathyroid disorders and renal osteodystrophy. In: Resnick D (ed) Diagnosis of bone and joint disorders. WB Saunders, Philadelphia, pp 2043–2111

    Google Scholar 

  • Ross LV, Ross GJ, Mesgarzadeh M et al. (1991) Hemodialysis related amyloidomas of the bone. Radiology 178:263–265

    PubMed  CAS  Google Scholar 

  • Sattari A, Quillard A, Laredo J et al. (2008) Benign nontraumatic osteolytic vertebral collapse simulating malignancy. Eur Radiol 18: 631–638

    Article  PubMed  Google Scholar 

  • Schapira D, Ben Izhak O, Nachtigal A et al. (1995) Tumour-induced osteomalacia. Semin Arthritis Rheum 25:35–46

    Article  PubMed  CAS  Google Scholar 

  • Simoens WA, Van den Hauwe L, Van Hedent et al. (2000) Amyloidoma of the skull base. AJNR Am J Neuroradiol 21:1559–1562

    PubMed  CAS  Google Scholar 

  • Sparagana M (1987) Tumour-induced osteomalacia: long-term follow-up of two patients cured by removal of their tumours. J Surg Oncol 36:198–205

    Article  PubMed  CAS  Google Scholar 

  • Spuentrup E, Buecker A, Adam G et al. (2001) Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR 176:351–358

    PubMed  CAS  Google Scholar 

  • Sundaram M, McCarthy EF (2000) Oncogenic osteomalacia. Skeletal Radiol 29:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sundaram M, Seelig R, Pohl D (1987) Vertebral erosions in patients undergoing maintenance hemodialysis for chronic renal failure. AJR 149:323–327

    PubMed  CAS  Google Scholar 

  • Sundaram M, Wang L, Rotman L (2001) Florid reactive periostitis and bizarre parosteal osteochondromatous proliferation: pre-biopsy imaging evolution, treatment and outcome. Skeletal Radiol 30:192–198

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Suzuki H, Ogura S et al. (2004) Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J Clin Endocrinol Metab 89:3979–3982

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Liu Y, Li W et al. (2007) Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 36:1035–1041

    Article  PubMed  Google Scholar 

  • Vogler JB III, Murphy WA (1988) Bone marrow imaging. Radiology 168:679

    PubMed  Google Scholar 

  • Wagner AD, Mai U, Hammer M et al. (1997) Long–term antibiotic therapy in patients with SAPHO syndrome (abstract). Arthritis Rheum 40:562

    Article  Google Scholar 

  • Wyman AL, Paratinas FJ, Daly JR (1997) Hypophosphatemic osteomalacia associated with a malignant tumour of the tibia: report of a case. J Clin Pathol 30:328–335

    Article  Google Scholar 

  • Yuh WT, Zachar CK, Barloon TJ et al. (1989) Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 172:215–218

    PubMed  CAS  Google Scholar 

  • Zhou XJ, Leeds NE, McKinnon GC (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 23:165–170

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanghvi, D., Sundaram, M. (2009). Reactive, Metabolic, and Tumor-Like Lesions of Bone. In: Davies, A., Sundaram, M., James, S. (eds) Imaging of Bone Tumors and Tumor-Like Lesions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77984-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77984-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77982-7

  • Online ISBN: 978-3-540-77984-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics