Skip to main content

Anaerobic Degradation of Hydrocarbons: Mechanisms of C–H-Bond Activation in the Absence of Oxygen

  • Reference work entry

Abstract:

Hydrocarbons are highly abundant in nature and are formed either via geochemical or biological processes. Their high C–H bond dissociation energies are responsible for low chemical reactivities. Due to the toxicity of many hydrocarbons, their biological degradation is of environmental concern. In the presence of oxygen, the C–H-bond is activated by oxygenases involving enzyme-bound reactive oxygen species in exergonic reactions. In contrast, anaerobic hydrocarbon-degrading bacteria use a number of alternative enzymatic reactions for the mechanistically sophisticated C–H-bond activation. Some of these reactions are only known from anaerobic hydrocarbon degradation pathways, and some follow unprecedented biochemical mechanisms. The known oxygen-independent C–H-activation reactions comprise: (1) hydroxylation with water by molybdenum cofactor containing enzymes, (2) addition to fumarate by glycyl-radical enzymes, (3) reverse methanogenesis involving variants of methyl-coenzyme M reductase, (4) methylation, and (5) carboxylation catalyzed by yet-uncharacterized enzymes. The available knowledge about these enzymes varies greatly: the ethylbenzene hydroxylating molybdenum enzyme has been characterized structurally and functionally, whereas even the mode of initial activation is at issue in case of benzene degradation (methylation vs. carboxylation).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68: 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Reinhard M, Grbic-Galic D (1992) Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58: 3192–3195.

    PubMed  CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238: 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6: 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72: 4274–4282.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Chiang YR, Ismail W, Muller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282: 13240–13249.

    Article  PubMed  CAS  Google Scholar 

  • Cunane LM, Chen ZW, McIntire WS, Mathews FS (2005) p-Cresol methylhydroxylase: alteration of the structure of the flavoprotein subunit upon its binding to the cytochrome subunit. Biochemistry 44: 2963–2973.

    Article  PubMed  CAS  Google Scholar 

  • Cunane LM, Chen ZW, Shamala N, Mathews FS, Cronin CN, McIntire WS (2000) Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J Mol Biol 295: 357–374.

    Article  PubMed  CAS  Google Scholar 

  • Duboc-Toia C, et al. (2003) Very high-field EPR study of glycyl radical enzymes. J Am Chem Soc 125: 38–39.

    Article  PubMed  CAS  Google Scholar 

  • Efimov I, Cronin CN, Bergmann DJ, Kuusk V, McIntire WS (2004) Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase. Biochemistry 43: 6138–6148.

    Article  PubMed  CAS  Google Scholar 

  • Ettwig et al. (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 3164–3173.

    Google Scholar 

  • Evans PJ, Ling W, Goldschmidt B, Ritter ER, Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl Environ Microbiol 58: 496–501.

    PubMed  CAS  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46: 565–601.

    Article  PubMed  CAS  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Heider J, Rabus R (2008) Genomic insights in the anaerobic biodegradation of organic pollutants. Norfolk:Caister Academic.

    Google Scholar 

  • Himo F (2005) C-C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim Biophys Acta 1707: 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Hopper DJ (1976) The hydroxylation of p-cresol and its conversion to p-hydroxybenzaldehyde in Pseudomonas putida. Biochem Biophys Res Commun 69: 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183: 4536–4542.

    Article  PubMed  CAS  Google Scholar 

  • Johnson HA, Spormann AM (1999) In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J Bacteriol 181: 5662–5668.

    PubMed  CAS  Google Scholar 

  • Kasai Y, Kodama Y, Takahata Y, Hoaki T, Watanabe K (2007) Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11. Environ Sci Technol 41: 6222–6227.

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72: 3586–3592.

    Article  PubMed  CAS  Google Scholar 

  • Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14: 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, et al. (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449: 898–901.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glockner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69: 760–768.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276: 21381–21386.

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Losekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71: 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Krieger CJ, Roseboom W, Albracht SP, Spormann AM (2001) A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J Biol Chem 276: 12924–12927.

    Google Scholar 

  • Krüger M, et al. (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426: 878–881.

    Article  PubMed  Google Scholar 

  • Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10: 1703–1712.

    Article  PubMed  CAS  Google Scholar 

  • Leuthner B, et al. (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Marsh EN (2006) Mechanism of benzylsuccinate synthase probed by substrate and isotope exchange. J Am Chem Soc 128: 16056–16057.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39: 147–164.

    Article  PubMed  CAS  Google Scholar 

  • McIntire W, Hopper DJ, Singer TP (1985) p-Cresol methylhydroxylase. Assay and general properties. Biochem J 228: 325–335.

    PubMed  CAS  Google Scholar 

  • MP, McLeod LD (eds.) Eltis (2008) Genomic insights into the aerobic pathways for degradation of organic pollutants. Norfolk: Academic Press.

    Google Scholar 

  • Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181: 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Müller JA, Galushko AS, Kappler A, Schink B (2001) Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J Bacteriol 183: 752–757.

    Article  PubMed  Google Scholar 

  • Musat F, et al. (2008) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol, 11(1): 209–219.

    Article  PubMed  Google Scholar 

  • Musat F, Widdel F (2008) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10: 10–19.

    PubMed  CAS  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7: 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, et al. (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Peters F, Heintz D, Johannes J, van Dorsselaer A, Boll M (2007) Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. J Bacteriol 189: 4729–4738.

    Article  PubMed  CAS  Google Scholar 

  • Qiao C, Marsh EN (2005) Mechanism of benzylsuccinate synthase: stereochemistry of toluene addition to fumarate and maleate. J Am Chem Soc 127: 8608–8609.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, et al. (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183: 1707–1715.

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918–921.

    Article  PubMed  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2004) Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47. FEMS Microbiol Lett 240: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186: 4556–4567.

    Article  PubMed  Google Scholar 

  • Selmer T, Pierik AJ, Heider J (2005) New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem 386: 981–988.

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8: 643–648.

    Article  PubMed  CAS  Google Scholar 

  • So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69: 3892–3900.

    Article  PubMed  CAS  Google Scholar 

  • Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46: 7637–7646.

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125: 158–170.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39: 6681–6691.

    Article  PubMed  CAS  Google Scholar 

  • Verfürth K, Pierik AJ, Leutwein C, Zorn S, Heider J (2004) Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Arch Microbiol 181: 155–162.

    Article  PubMed  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12: 259–276.

    Article  PubMed  CAS  Google Scholar 

  • Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177: 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63: 4759–4764.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Boll, M., Heider, J. (2010). Anaerobic Degradation of Hydrocarbons: Mechanisms of C–H-Bond Activation in the Absence of Oxygen. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_71

Download citation

Publish with us

Policies and ethics