Skip to main content

Abstract

In this contribution an optimized version of the so–called mapped wave envelope elements, also known as Astley–Leis elements, is presented and its practical usability is assessed. The elements are based on Jacobi polynomials in the direction of radiation, which leads to a low conditioning of the resulting system matrices and to a superior performance in conjunction with iterative solvers. This is shown for practically relevant simulations in the frequency as well as in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astley RJ (1996) Transient wave–envelope elements for wave problems. Journal of Sound and Vibration 192:245–261

    Article  ADS  Google Scholar 

  2. Astley RJ (2000) Infinite element formulations for wave problems: a review of current formulations and an assessment of accuracy. International Journal for Numerical Methods in Engineering 49:951–976

    Article  MATH  Google Scholar 

  3. Astley RJ, Coyette JP (2001) Conditioning of infinite element schemes for wave problems. Communications in Numerical Methods in Engineering 17:31–41

    Article  MATH  Google Scholar 

  4. Astley RJ, Coyette JP (2001) The performance of spheroidal infinite elements. International Journal for Numerical Methods in Engineering 52:951–976

    Article  Google Scholar 

  5. Astley RJ, Coyette JP, Cremers L (1998) Three–dimensional wave–envelope elements of variable order for acoustic radiation and scattering Part II. Formulation in the time domain. Journal of the Acoustical Society of America 103:64–72

    Article  ADS  Google Scholar 

  6. Astley RJ, Hamilton JA (2000) Numerical studies of conjugated infinite elements for acoustic radiation. Journal of Computational Acoustics 8:1–24

    MathSciNet  Google Scholar 

  7. Astley RJ, Hamilton JA (2006) The stability of infinite element schemes for transient wave problems. Computer Methods in Applied Mechanics and Engineering 195:3553–3571

    Article  MATH  MathSciNet  Google Scholar 

  8. Astley RJ, Macaulay GJ, Coyette JP (1994) Mapped wave envelope elements for acoustic radiation and scattering. Journal of Sound and Vibration 170:97–118

    Article  MATH  ADS  Google Scholar 

  9. Astley RJ, Macaulay GJ, Coyette JP Cremers L (1998) Three–dimensional wave–envelope elements of variable order for acoustic radiation and scattering Part I. Formulation in the frequency domain. Journal of the Acoustical Society of America 103:49–63

    Article  ADS  Google Scholar 

  10. Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley M, McInnes LC, Smith BF, Zhang H (2004) PETSc users manual (Portable, Extensible Toolkit for Scientific Computation). Technical Report ANL–95/11 – Revision 2.1.5, Argonne National Laboratory

    Google Scholar 

  11. Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solution of linear systems: Building blocks for iterative methods. SIAM, Philadelphia, 2. edition

    Google Scholar 

  12. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  13. Benzi M (2002) Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182:418–477

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114:185–200

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Bettess P (1977) Infinite elements. International Journal for Numerical Methods in Engineering 11:53–64

    Article  MATH  ADS  Google Scholar 

  16. Bettess P (1992) Infinite elements. Penshaw Press, Sunderland

    Google Scholar 

  17. Bettess P, Zienkiewicz OC (1977) Diffraction and refraction of surface waves using finite and infinite elements. International Journal for Numerical Methods in Engineering 11:1271–1290

    Article  MATH  MathSciNet  Google Scholar 

  18. Brinkmeier M, Nackenhorst U, Petersen S, Estorff O von (2007) A numerical model for the simulation of tire rolling noise. Journal of Sound and Vibration, accepted for publication

    Google Scholar 

  19. Burnett DS (1994) A 3–d acoustic infinite element based on a prolate spheroidal multipole expansion. Journal of the Acoustical Society of America 96:2798–2816

    Article  ADS  MathSciNet  Google Scholar 

  20. Burnett DS, Holford RL (1998) An ellipsoidal acoustic infinite element. Computer Methods in Applied Mechanics and Engineering 164:49–76

    Article  MATH  MathSciNet  Google Scholar 

  21. Burnett DS, Holford (1998) Prolate and oblate spheroidal acoustic infinite elements. Computer Methods in Applied Mechanics and Engineering 158:117–141

    Article  MATH  MathSciNet  Google Scholar 

  22. Cipolla J (2002) Acoustic infinite elements with improved robustness. In: Sas P, Van Hal B (eds) Proceedings of ISMA 2002, Katholieke Universiteit Leuven, 2181–2187

    Google Scholar 

  23. Coyette JP, Meerbergen K, Robbé M (2005) Time integration for spherical acoustic finite–infinite element models. International Journal for Numerical Methods in Engineering 64:1752–1768

    Article  MATH  MathSciNet  Google Scholar 

  24. Demkowicz L, Gerdes K (1998) Convergence of the infinite element methods for the Helmholtz equation in separable domains. Numerische Mathematik 79:11–42

    Article  MATH  MathSciNet  Google Scholar 

  25. Dreyer D (2004) Efficient infinite elements for exterior acoustics. PhD Thesis, Technical University of Hamburg–Harburg

    Google Scholar 

  26. Dreyer D, Petersen S, Estorff O von (2006) Effectiveness and robustness of improved infinite elements for exterior acoustics. Computer Methods in Applied Mechanics and Engineering 195:3591–3607

    Article  MATH  MathSciNet  Google Scholar 

  27. Dreyer D, Estorff O von (2003) Improved conditioning of infinite elements for exterior acoustics. International Journal for Numerical Methods in Engineering 58:933–953

    Article  MATH  Google Scholar 

  28. Estorff O von (2003) Efforts to reduce computation time in numerical acoustics – an overview. Acta Acustica united with Acustica 89:1–13

    Google Scholar 

  29. Freund RW (1993) A transpose–free quasi–minimal residual algorithm for non–hermitian linear systems. SIAM Journal on Scientific Computing 14:470–482

    Article  MATH  MathSciNet  Google Scholar 

  30. Freund RW, Nachtigal NM (1991) QMR: a quasi–minimal residual method for non–hermitian linear systems. Numerische Mathematik 60:315–339

    Article  MATH  MathSciNet  Google Scholar 

  31. Gerdes K (1998) The conjugate vs. the unconjugate infinite element method for the Helmholtz equation in exterior domains. Computer Methods in Applied Mechanics and Engineering 152:125–145

    Article  MATH  MathSciNet  Google Scholar 

  32. Gerdes K (2000) A review of infinite element methods for exterior Helmholtz problems. Journal of Computational Acoustics 8:43–62

    MathSciNet  Google Scholar 

  33. Gerdes K, Demkowicz L (1996) Solution of 3d–Laplace and Helmholtz equation in exterior domains using hp–infinite elements. Computer Methods in Applied Mechanics and Engineering 137:239–273

    Article  MATH  MathSciNet  Google Scholar 

  34. Givoli D (2004) High–order local non–reflecting boundary conditions: a review. Wave Motion 39:319–326

    Article  MATH  MathSciNet  Google Scholar 

  35. Grote MJ, Keller JB (1995) On nonreflecting boundary conditions. Journal of Computational Physics 122:231–243

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Guddati MN, Lim KW (2006) Continued fraction absorbing boundary conditions for convex polygonal domains. International Journal for Numerical Methods in Engineering 66:949–977

    Article  MATH  MathSciNet  Google Scholar 

  37. Harari I (2006) A survey of finite element methods for time–harmonic acoustics. Computer Methods in Applied Mechanics and Engineering 195:1594–1607

    Article  MATH  MathSciNet  Google Scholar 

  38. Harari I, Slavutin M, Turkel E (2006) Studies of FE/PML for exterior problems of time–harmonic elastic waves. Computer Methods in Applied Mechanics and Engineering 195:3854–3879

    Article  MATH  MathSciNet  Google Scholar 

  39. Ihlenburg F (1998) Finite element analysis of acoustic scattering. Springer–Verlag, New York

    Book  MATH  Google Scholar 

  40. Ihlenburg F (2000) On fundamental aspects of exterior approximations with infinite elements. Journal of Computational Acoustics 8:63–80

    MathSciNet  Google Scholar 

  41. Keller JB, Givoli D (1989) Exact non–reflecting boundary conditions. Journal of Computational Physics 82:172–192

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers 22:237–254

    Article  Google Scholar 

  43. Leis R (1986) Initial boundary value problems in mathematical physics. Wiley & Teubner, Stuttgart

    MATH  Google Scholar 

  44. Magolu monga Made M (2001) Incomplete factorization–based preconditionings for solving the Helmholtz equation. International Journal for Numerical Methods in Engineering 50:1077–1101

    Article  MATH  Google Scholar 

  45. Marques JMMC, Owen DRJ (1984) Infinite elements in quasi–static materially nonlinear problems. Computers & Structures 18:739–751

    Article  Google Scholar 

  46. Petersen S, Dreyer D, Estorff O von (2006) Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics. Computer Methods in Applied Mechanics and Engineering 195:6463–6478

    Article  MATH  Google Scholar 

  47. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd edition

    MATH  Google Scholar 

  48. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  49. Shirron JJ, Babuška I (1998) A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems. Computer Methods in Applied Mechanics and Engineering 164:121–139

    Article  MATH  MathSciNet  Google Scholar 

  50. Shirron JJ, Dey S (2002) Acoustic infinite elements for non–separable geometries. Computer Methods in Applied Mechanics and Engineering 191:4123–4139

    Article  MATH  Google Scholar 

  51. Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid–fluid interface. Computer Methods in Applied Mechanics and Engineering 195:279–288

    Article  MathSciNet  Google Scholar 

  52. Thompson LL, (2006) A review of finite–element methods for time–harmonic acoustics. Journal of the Acoustical Society of America 119:1315–1330

    Article  ADS  Google Scholar 

  53. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia

    MATH  Google Scholar 

  54. Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave–like equations. Applied Numerical Mathematics 27:533–557

    Article  MATH  MathSciNet  Google Scholar 

  55. Van den Nieuwenhof B, Coyette JP (2001) Treatment of frequency–dependent admittance boundary conditions in transient acoustic finite/infinite–element models. Journal of the Acoustical Society of America 110:1743–1751

    Article  ADS  Google Scholar 

  56. Van der Vorst HA (1992) Bi–CGSTAB: a fast and smoothly converging variant of Bi–CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 13:631–644

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Estorff, O., Petersen, S., Dreyer, D. (2008). Efficient Infinite Elements based on Jacobi Polynomials. In: Marburg, S., Nolte, B. (eds) Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77448-8_9

Download citation

Publish with us

Policies and ethics