Skip to main content

Statistical Properties of Disordered Driven Lattice Gases with Open Boundaries

  • Conference paper
Traffic and Granular Flow ’07

Summary

We investigate driven lattice gases with open boundary conditions in presence of randomly distributed defect sites with reduced hopping rate 1. These systems can be used as models for intracellular transport systems impurified by immobile blocking molecules. In contrast to equilibrium, even macroscopic quantities in disordered non-equilibrium systems depend sensitively on the defect sample. We show that the leading behaviour in the disordered system is determined by the longest stretch of consecutive defect sites. Using results from extreme value statistics 2 this single-bottleneck approximation gives accurate results for the expectation values of the maximum current at small defect densities. Corrections from bottleneck interactions can be taken into account systematically by a perturbative expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barma M (2006) Physica A 372:22–33.

    Article  Google Scholar 

  2. Sornette D (2000) Critical Phenomena in Natural Sciences. Springer, Berlin Heidelberg New York.

    MATH  Google Scholar 

  3. Chowdhury D, Santen L, Schadschneider A (2000) Phys. Rep. 329:199.

    Article  MathSciNet  Google Scholar 

  4. Parmeggiani A, Franosch T, Frey E (2003) Phys. Rev. Lett. 90:086601.

    Article  Google Scholar 

  5. Klumpp S, Nieuwenhuizen T M, Lipowsky R (2005) Physica E: 29:380.

    Article  Google Scholar 

  6. Nishinari K, Okada Y, Schadschneider A, Chowdhury D (2005) Phys. Rev. Lett. 95:118101.

    Article  Google Scholar 

  7. Greulich P, Garei A, Nishinari K, Schadschneider A, Chowdhury D (2007) Phys. Rev. E 75:041905.

    Article  Google Scholar 

  8. MacDonald J T, Gibbs J H, Pipkin A C (1968) Biopolymers 6:1.

    Article  Google Scholar 

  9. Krug J (1991) Phys. Rev. Lett. 67:1882.

    Article  MathSciNet  Google Scholar 

  10. Derrida B, Evans M R, Hakim V, Pasquier V (1993) J. Phys. A 26:1493.

    Article  MATH  MathSciNet  Google Scholar 

  11. Schütz G M, Domany E (1993) J. Stat. Phys. 72:277.

    Article  MATH  Google Scholar 

  12. Janowsky S A, Lebowitz J L (1992) Phys. Rev. A 45:618.

    Article  Google Scholar 

  13. Janowsky S A, Lebowitz J L (1993) J. Stat. Phys. 77:35.

    Article  MathSciNet  Google Scholar 

  14. Krug J (2000) Braz. Jrl. Phys. 30:97.

    Google Scholar 

  15. Tripathy G, Barma M (1997) Phys. Rev. Lett. 78:3039.

    Article  Google Scholar 

  16. Enaud C, Derrida B (2004) Europhys. Lett. 66:83.

    Article  Google Scholar 

  17. Greulich P, Schadschneider A (2007) in preparation.

    Google Scholar 

  18. Chou T, Lakatos G (2004) Phys. Rev. Lett. 93: 198101.

    Article  Google Scholar 

  19. Greulich P, Schadschneider A (2007) submitted to Physica A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cécile Appert-Rolland François Chevoir Philippe Gondret Sylvain Lassarre Jean-Patrick Lebacque Michael Schreckenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greulich, P., Schadschneider, A. (2009). Statistical Properties of Disordered Driven Lattice Gases with Open Boundaries. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, JP., Schreckenberg, M. (eds) Traffic and Granular Flow ’07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77074-9_31

Download citation

Publish with us

Policies and ethics