Skip to main content

Object detection in airborne laser scanning data - an integrative approach on object-based image and point cloud analysis

  • Chapter
Object-Based Image Analysis

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

In recent years object-based image analysis of digital elevation models acquired by airborne laser scanning gained in importance. Various applications for land cover classification (e.g. building and tree detection) already show promising results. Additionally to elevation rasters the original airborne laser scanning point cloud contains highly detailed 3D information. This paper introduces an integrative approach combining object-based image analysis and object-based point cloud analysis. This integrative concept is applied to building detection in the raster domain followed by a 3D roof facet delineation and classification in the point cloud. The building detection algorithm consists of a segmentation task, which is based on a fill sinks algorithm applied to the inverted digital surface model, and a rule-based classification task. The 340 buildings of the test site could be derived with 85% user’s accuracy and 92% producer’s accuracy. For each building object the original laser points are further investigated by a 3D segmentation (region growing) searching for planar roof patches. The finally delineated roof facets and their descriptive attributes (e.g. slope, 3D area) represent a useful input for a multitude of applications, such as positioning of solar-thermal panels and photovoltaics or snow load capacity modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arge L, Chase J, Toma L, Vitter J, Wickremesinghe R, Halpin P, Urban D (2003) Efficient flow computation on massive grid terrain datasets. GeoInformatica, vol 7 (4), pp 283-313

    Article  Google Scholar 

  • Asselen S, Seijmonsbergen AC (2006) Expert-driven semiautomated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, vol 78 (3-4), pp 309-320

    Google Scholar 

  • Bartunov O, Sigaev T (2007) GiST for PostgreSQL, http://www.sai.msu.su/~megera/postgres/gist/, last accessed: 9.3.2007

    Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, vol 58 (3-4), pp 239-258

    Google Scholar 

  • Brennan R, Webster TL (2006) Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, vol 32 (2), pp 162-172

    Google Scholar 

  • Brenner C (2005) Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, vol 6 (3-4), pp 187-198

    Google Scholar 

  • Cain DJM (2007) PyGreSQL – PostgreSQL module for Python, http://www.pygresql.org, last accessed: 9.3.2007

    Google Scholar 

  • Filin S, Pfeifer N (2005) Neighborhood systems for airborne laser scanner data. Photogrammetric Engineering and Remote Sensing, vol 71 (6), pp 743-755

    Google Scholar 

  • Filin S, Pfeifer N (2006) Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, vol 60 (2), pp 71-80

    Google Scholar 

  • GRASS Development Team (2007) Geographic Resources Analysis Support System (GRASS) Software, ITC-irst, Trento Italy, http://grass.itc.it, last accessed: 9.3.2007

    Google Scholar 

  • Haralick RM, Shapiro LG (1992) Computer and Robot Vision. Addison-Wesley Longman Publishing Co., Boston Massachusetts

    Google Scholar 

  • Höfle B, Geist T, Rutzinger M, Pfeifer N (2007) Glacier surface segmentation using airborne laser scanning point cloud and intensity data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Espoo, Finland, on CD

    Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2007.05.008, accepted for publication

    Google Scholar 

  • Höfle B, Rutzinger M, Geist T, Stötter J (2006) Using airborne laser scanning data in urban data management - set up of a flexible information system with open source components. In: Fendel E, Rumor M (eds) Proceedings of UDMS 2006: 25th Urban Data Management Symposium, Aalborg, on CD

    Google Scholar 

  • Hollaus M, Wagner W, Kraus K (2005) Airborne laser scanning and usefulness for hydrological models. Advances in Geosciences, vol 5, pp 57-63

    Article  Google Scholar 

  • Jones E, Oliphant T, Peterson P et al. (2001-): SciPy: Open Source Scientific Tools for Python, http://www.scipy.org, , last accessed: 9.3.2007

    Google Scholar 

  • Maier B, Tiede D, Dorren L (2006) Assessing mountain forest structure using airborne laser scanning and landscape metrics. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI (4/C42), on CD

    Google Scholar 

  • Pfeifer N, Rutzinger M, Rottensteiner F, Mücke W, Hollaus M (2007) Extraction of building footprints from airborne laser scanning: comparison and validation techniques. Proceedings of the Urban Remote Sensing Joint Event 2007: 4th IEEE/GRSS ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas 6th International Symposium of Remote Sensing over Urban Areas, Paris, on CD

    Google Scholar 

  • PostgreSQL Global Development Group (2007) PostgreSQL 8.1 Documentation, http://www.postgresql.org/docs/manuals/, last accessed: 9.3.2007

    Google Scholar 

  • Python Software Foundation (2007) Python programming language, http://www.python.org, last accessed: 9.3.2007

    Google Scholar 

  • Refractions Research Inc. (2007): PostGIS: Geographic Objects for PostgreSQL, PostGIS Manual, http://postgis.refractions.net/docs/, last accessed: 9.3.2007

    Google Scholar 

  • Reitberger J, Krzystek P, Stilla U (2006) Analysis of full waveform lidar data for tree species classification. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI (3), pp 228-233

    Google Scholar 

  • Rutzinger M, Höfle B, Geist T, Stötter J (2006a) Object-based building detection based on airborne laser scanning data within GRASS GIS environment. In: Fendel E, Rumor M (eds) Proceedings of UDMS 2006: 25th Urban Data Management Symposium, Aalborg, on CD

    Google Scholar 

  • Rutzinger M, Höfle B, Pfeifer N, Geist T, Stötter J (2006b) Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI (4/C42), on CD

    Google Scholar 

  • Sithole G (2005) Segmentation and classification of airborne laser scanner data. Publications on Geodesy of the Netherlands Commission of Geodesy, Delft

    Google Scholar 

  • Tóv´ri D, Pfeifer N (2005) Segmentation based robust interpolation – a new approach to laser data filtering. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI (3/W19), pp 79-84

    Google Scholar 

  • Tóv´ri D, Vögtle T (2004) Classification methods for 3D objects in laserscanning data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXV (B3), on CD

    Google Scholar 

  • Vögtle T, Steinle E, Tóv´ri D (2005) Airborne laserscanning data for determination of suitable areas for photovoltaics. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI (3/W19), pp 215-220

    Google Scholar 

  • Vosselman G, Kessels P, Gorte B (2005) The utilisation of airborne laser scanning for mapping. International Journal of Applied Earth Observation and Geoinformation, vol 6 (3/4), pp 177-186

    Google Scholar 

  • Warmerdam F (2007) GDAL - Geospatial Data Abstraction Library. http://www.gdal.org, last accessed: 9.3.2007

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning - an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, vol 54 (2-3), pp 68-82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rutzinger, M., Höfle, B., Pfeifer, N. (2008). Object detection in airborne laser scanning data - an integrative approach on object-based image and point cloud analysis. In: Blaschke, T., Lang, S., Hay, G.J. (eds) Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77058-9_35

Download citation

Publish with us

Policies and ethics