Skip to main content

Unitary Representations and Complex Analysis

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1931))

Much of what I will say depends on analogies between representation theory and linear algebra, so let me begin by recalling some ideas from linear algebra. One goal of linear algebra is to understand abstractly all possible linear transformations T of a vector space V. The simplest example of a linear transformation is multiplication by a scalar on a one-dimensional space. Spectral theory seeks to build more general transformations from this example. In the case of infinite-dimensional vector spaces, it is useful and interesting to introduce a topology on V, and to require that T be continuous. It often happens (as in the case when T is a differential operator acting on a space of functions) that there are many possible choices of V, and that choosing the right one for a particular problem can be subtle and important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bourbaki. Topological vector spaces. Chapters 1-5. Springer-Verlag, Berlin-Heidelberg-New York, 1987.

    MATH  Google Scholar 

  2. T. Bratten. Realizing representations on generalized flag manifolds. Com-positio math., 106:283-319, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Bratten. A comparison theorem for Lie algebra homology groups. Pacific J. Math., 182:23-36, 1998.

    MATH  MathSciNet  Google Scholar 

  4. F. Bruhat. Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France, 84:97-205, 1956.

    MATH  MathSciNet  Google Scholar 

  5. A. Borel and N. Wallach. Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Prince-ton, New Jersey, 1980.

    MATH  Google Scholar 

  6. W. Casselman. Canonical extensions of Harish-Chandra modules to repre-sentations of G. Can. J. Math., 41:385-438, 1989.

    MATH  MathSciNet  Google Scholar 

  7. Harish-Chandra. Representations of semisimple Lie groups. V. Amer. J. Math., 78:1-41, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Helgason. Geometric Analysis on Symmetric Spaces, volume 39 of Math-ematical Surveys and Monographs. American Mathematical Society, Prov-idence, Rhode Island, 1994.

    Google Scholar 

  9. R. Howe. The oscillator semigroup. In The Mathematical Heritage of Hermann Weyl, volume 48 of Proceedings of Symposia in Pure Mathematics, pages 61-132. American Mathematical Society, Providence, Rhode Island, 1988.

    Google Scholar 

  10. R. Howe. Transcending classical invariant theory. J. Amer. Math. Soc., 2:535-552, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Knapp. Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton, New Jersey, 1986.

    MATH  Google Scholar 

  12. B. Kostant. Lie algebra cohomology and the generalized Borel-Weil theo- rem. Ann. of Math., 74:329-387, 1961.

    Article  MathSciNet  Google Scholar 

  13. A. Knapp and D. Vogan. Cohomological Induction and Unitary Represen- tations. Princeton University Press, Princeton, New Jersey, 1995.

    Google Scholar 

  14. A. Knapp and G. Zuckerman. Classification theorems for representations of semisimple Lie groups. In Non-commutative Harmonic Analysis, volume 587 of Lecture Notes in Mathematics, pages 138-159. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Chapter  Google Scholar 

  15. W. Schmid. Boundary value problems for group invariant differential equations. In The mathematical heritage ofElie Cartan, pages 311-321. Astérisque, 1985.

    Google Scholar 

  16. J. P. Serre. Un théorème de dualité. Comment. Math. Helv., 29:9-26, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. P. Serre. Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts. In Séminaire Bourbaki, 6ième année: 1953/54. Secrétariat mathématique, Paris, 1959.

    Google Scholar 

  18. F. Treves. Topological vector spaces, distributions, and kernels. Academic Press, New York, 1967.

    MATH  Google Scholar 

  19. J. Tirao and J. Wolf. Homogeneous holomorphic vector bundles. Indiana Univ. Math. J., 20:15-31, 1970/1971.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Vogan. Unitarizability of certain series of representations. Ann. of Math., 120:141-187, 1984.

    Article  MathSciNet  Google Scholar 

  21. D. Vogan. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies. Princeton University Press, Princeton, New Jersey, 1987.

    Google Scholar 

  22. A. Weil. Sur certaines groupes d’opérateurs unitaires. Acta Math., 111:143- 211,1964.

    Article  MathSciNet  Google Scholar 

  23. J. Wolf. The action of a real semisimple group on a complex flag manifold. i. orbit structure and holomorphic arc components. Bull. Amer. Math. Soc., 75:1121-1237, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Wong. Cohomological induction in various categories and the maximal globalization conjecture. Duke Math. J., 96:1-27, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogan, D.A. (2008). Unitary Representations and Complex Analysis. In: Tarabusi, E.C., D'Agnolo, A., Picardello, M. (eds) Representation Theory and Complex Analysis. Lecture Notes in Mathematics, vol 1931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76892-0_5

Download citation

Publish with us

Policies and ethics