Skip to main content

Molecular Imaging in Cardiology

  • Chapter
Molecular Imaging

Abstract

In order to address the clinical issues associated with coronary artery disease and congestive heart failure, the current major diagnostic imaging procedures in nuclear cardiology are based on the assessment of myocardial blood flow and substrate metabolism using FDA approved SPECT and PET radiopharmaceuticals. Molecular imaging using biologically targeted radiopharmaceuticals will play a key role in an interdisciplinary approach to understanding the origins, pathogenesis, and the progress of cardiac diseases, and in the evaluation of therapeutic interventions. This chapter will provide a broad overview of the mechanisms involved in myocardial uptake and localization of current and the investigational radiopharmaceuticals in nuclear cardiology. Specifically, the design and development of molecular imaging radiotracers to image the myocardial fatty acid metabolism, adrenergic innervation, angiogenesis, and vulnerable plaque will be discussed. The potential clinical utility of these molecular imaging probes is also presented with specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arimoto T, Takeishi Y, Fukui A, et al (2004) Dynamic 123I-MIBG SPECT reflects sympathetic nervous integrity and predicts clinical outcome in patients with chronic heart failure. Ann Nucl Med 18:145–150

    Article  PubMed  Google Scholar 

  • Armbrecht JJ, Buxton DB, Brunken RC, et al (1989) Regional myocardial oxygen consumption determined noninvasively in human with [1−11C]acetate and dynamic positron tomography. Circulation 80:863–872

    PubMed  CAS  Google Scholar 

  • Arora R, Ferrick KJ, Nakata T, et al (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131

    Article  PubMed  Google Scholar 

  • Aruva MR, Daviau J, Sharma SS, et al (2006) Imaging throm-boembolism with fibrin-avid 99 mTc-peptide: evaluation in swine. J Nucl Med 47:155–162

    PubMed  CAS  Google Scholar 

  • Banati RB (2003) Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br Med Bull 65:121–131

    Article  PubMed  Google Scholar 

  • Barron HV, Lesh MD (1996) Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol 27:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Basken NA, Mathias CJ, Lipka AE, et al (2008) Species Dependence of the [64Cu]Cu-Bis(thiosemicarbazone) radiop-harmaceutical binding to serum albumins. Nucl Med Biol 35:281–286

    Article  PubMed  CAS  Google Scholar 

  • Ben-Haim S, Israel O (2006) PET/CT for atherosclerotic imaging. QJ Nucl Med Mol Imaging 50:53–60

    CAS  Google Scholar 

  • Bengel FM, Schachinger V, Dimmeler S (2005) Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imag 32:S404–S416

    Article  Google Scholar 

  • Berman DS, Shaw LJ, Hachamovitch R et al (2007) Comparative use of radionuclide stress testing, coronary artery calcium scanning, and noninvasive coronary angiography for diagnostic and prognostic cardiac assessment. Semin Nucl Med 37:2–16

    Article  PubMed  Google Scholar 

  • Berridge MS, Nelson AD, Zheng L et al (1994) Specific beta-adrenergic receptor binding of carazolol measured with PET. J Nucl Med 35:1665–1676

    PubMed  CAS  Google Scholar 

  • Bing RJ (1954) The metabolism of the heart. In: Harvey Society of NY (ed) Harvey lecture series. Academic, New York

    Google Scholar 

  • Botker HE, Bottcher M, Schmitz O et al (1997) Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose. J Nucl Cardiol 4:125–132

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann JF, Abumrad NA, Ibrahimi A et al (2002) New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J 367:561–570

    Article  PubMed  CAS  Google Scholar 

  • Brooks P, Clark R, Cheresh D (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  • Buckman BO, Van Brocklin HF, Dence CS et al (1994) Synthesis and tissue distribution of [omega-11C]palmitic acid. A novel PET imaging agent for cardiac fatty acid metabolism. J Med Chem 27:2481–2485

    Article  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogen-esis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  • Carrio I (2001) Cardiac neurotransmission maging J Nucl Med 42:1062–1076

    PubMed  CAS  Google Scholar 

  • Davies JR, Rudd JHF, Weissberg PL, et al (2006) Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 47:C57–68

    Article  PubMed  CAS  Google Scholar 

  • Delforge J, Syrota A, Lancon JP et al (1991) Cardiac betaadren-ergic receptor density measured in vivo using PET, CGP12177, and a new graphical method. J Nucl Med 32:739–748

    PubMed  CAS  Google Scholar 

  • Dilsizian V, Bateman TM, Bergmann SR, et al (2005) Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 112:2169–2174

    Article  PubMed  Google Scholar 

  • Dobrucki LW, Sinusas AJ (2005) Cardiovascular molecular imaging. Semin Nucl Med 35:73–81

    Article  PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Vaalburg W (2004) Receptor imaging in the thorax with PET. Eur J Pharmacol 499:1–13

    Article  PubMed  CAS  Google Scholar 

  • Falk E (2006) Pathogenesis of atherosclerosis J Am Coll Cardiol 47:C7–C12

    Article  PubMed  CAS  Google Scholar 

  • Freundlieb C, Hock A, Vyska K (1980) Myocardial imaging and metabolic studies with [17−123I]iodoheptadecanoic acid. J Nucl Med 21:1043–1050

    PubMed  CAS  Google Scholar 

  • Fuster V, Corti R, Fayad et al (2003) Integration of vascular biology and magnetic resonance imaging in the understanding of atherothrombosis and acute coronary syndromes J Thromb Haemost 1:1410–1421

    Article  PubMed  CAS  Google Scholar 

  • Fuster V, Moreno PR, Fayad ZA et al (2005) Atherothrombosis and high-risk plaque part I: evolving concepts. J Am Coll Cardiol 46:937–954

    Article  PubMed  Google Scholar 

  • Geng YJ, Libby P (1995) Evidence for apoptosis in advanced human atheroma. Am J Pathol 147:251–266

    PubMed  CAS  Google Scholar 

  • Goldstein DS, Eisenhofer G, Dunn BB et al (1993). Positron emission tomographic imaging of cardiac sympathetic inner-vation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961–1971

    PubMed  CAS  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hypere-mia as measures of coronary flow reserve. Am J Cardiol 33: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Gropler RJ, Siegel BA, Geltman EM (1991) Myocardial uptake of carbon-11-acetate as an indirect estimate of regional myo-cardial blood flow. J Nucl Med 32:245–251

    PubMed  CAS  Google Scholar 

  • Heineman FW, Balaban RS (1993) Effects of after load and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol Heart Circ Physiol 264:H433–H440

    CAS  Google Scholar 

  • Higuchi T, Wester HJ, Schwaiger M (2007) Imaging of angiogen-esis in cardiology. Eur J Nucl Med Mol Imaging 34:S9–S19

    Article  PubMed  CAS  Google Scholar 

  • Huisman MC, Higuchi T, Reder S et al (2008) Initial characterization of an 18F-labeled myocardial perfusion tracer J Nucl Med 49:630–636

    Article  PubMed  Google Scholar 

  • Imamura Y, Ando H, Mitsuoka W, et al (1995) Iodine-123 metaiodobenzylguanidine images reflect intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. J Am Coll Cardiol 26:1594–1599

    Article  PubMed  CAS  Google Scholar 

  • Jain D (1999) Technetium-99 m labeled myocardial perfusion imaging agents. Semin Nucl Med 29:221–236

    Article  PubMed  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2004) Seeing within: molecular imaging of the cardiovascular system. Circ Res 94:433–445

    Article  PubMed  CAS  Google Scholar 

  • Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis. Emerging applications. J Am Coll Cardiol 47:1328–1338

    Article  PubMed  CAS  Google Scholar 

  • Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473

    Article  PubMed  CAS  Google Scholar 

  • Kline RC, Swanson DP, Wieland DM et al (2001) Myocardial imaging with I-123-metaiodobenzylguanidine. J Nucl Med 22:129–132

    Google Scholar 

  • Knapp FF Jr, Ambrose KR, Goodman MM (1986a). New radio-iodinated methyl-branched fatty acids for cardiac studies. Eur J Nucl Med 12:S39–S44

    CAS  Google Scholar 

  • Knapp FF Jr, Goodman MM, CallahanAP, et al (1986b) Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 27:521–531

    CAS  Google Scholar 

  • Knickmeier M, Matheja P, Wichter T, et al (2000) Clinical evaluation of no-carrieradded meta-(123I)iodobenzylguanidine for myocardial scintigraphy. Eur J Nucl Med 3:302–307

    Article  Google Scholar 

  • Knight LC (1990) Radiopharmaceuticals for thrombus detection. Semin Nucl Med 20:526

    Article  Google Scholar 

  • Knight LC (1993) Scintigraphic methods for detecting vascular thrombus. J Nucl Med 34:554–561

    PubMed  CAS  Google Scholar 

  • Knight LC (2001) Radiolabeled peptide ligands for imaging thrombi and emboli. Nucl Med Biol 28:515–526

    Article  PubMed  CAS  Google Scholar 

  • Knight LC (2003) Non-oncologic applications of radiolabeled peptides in nuclear medicine. Q J Nucl Med 47:279–91

    PubMed  CAS  Google Scholar 

  • Kotzerke J, Glatting G, van den Hoff J, et al (2001) Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans. Eur J Nucl Med 28:340–345

    Article  PubMed  CAS  Google Scholar 

  • Krivokapich J, Huang SC, Selin CE et al (1987) Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 252:H777–H787

    PubMed  CAS  Google Scholar 

  • Kudo T (2007) Metabolic imaging using PET. Eur J Nucl Med Mol Imaging 34:S49–S61

    Article  PubMed  CAS  Google Scholar 

  • Kyuma M, Nakata T, Hashimoto A, et al (2004) Incremental prognostic implications of brain natriuretic peptide, cardiac sympathetic nerve innervation, and noncardiac disorders in patients with heart failure. J Nucl Med 45:155–163

    PubMed  CAS  Google Scholar 

  • Landini L, Santarelli MF, Positano V, et al (2005) Molecular imaging: its application in cardiovascular diagnosis. Curr Pharm Des 11:2225–2234

    Article  PubMed  CAS  Google Scholar 

  • Laudano AP, Doolittle RF (1978) Synthetic peptide derivatives that bind to fibrinogen and prevent polymerization of fibrin polymers. Proc Natl Acad Sci U S A 75:3085–3089

    Article  PubMed  CAS  Google Scholar 

  • Lautamäki R, Tipre D, Bengel FM et al (2007) Cardiac sympathetic neuronal imaging using PET Eur J Nucl Med Mol Imaging 34:S74–S85

    Article  CAS  Google Scholar 

  • Lees RS, Lees AM, Strauss HW (1983) External imaging of human atherosclerosis. J Nucl Med 24:154–156

    PubMed  CAS  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  • Liedtke AJ (1981) Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23:321–336

    Article  PubMed  CAS  Google Scholar 

  • Lin JW, Sciacca RR, Chou RL et al (2001) Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med 42:201–208

    PubMed  CAS  Google Scholar 

  • Lopaschul GD, Stanley W (1997) Glucose metabolism in the ischemic heart. Circulation 95:415–422

    Google Scholar 

  • Lu E, Wagner WR, Schellenberger U, et al (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108:97–103

    Article  PubMed  CAS  Google Scholar 

  • Machac J (2005) Cardiac positron emission tomography imaging. Semin Nucl Med 35:17–36

    Article  PubMed  Google Scholar 

  • Madar I, Ravert HT, Du Y, et al (2006) Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 47: 1359–1366

    PubMed  CAS  Google Scholar 

  • Matter CM, Wyss MT, Meier P, et al (2006) 18F-Choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 26:584–589

    Article  PubMed  CAS  Google Scholar 

  • Merlet P, Delforge J, Syrota A, et al (1993). Positron emission tomography with [11C]CGP - 12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87:1169–1178

    PubMed  CAS  Google Scholar 

  • Muller JE, Abela GS, Nesto RW, et al (1994). Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol 23:809–813

    PubMed  CAS  Google Scholar 

  • Muller JE, Tawakol A, Kathiresan S et al (2006) New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and Plaques. J Am Coll Cardiol 47:C2–C6

    Article  PubMed  Google Scholar 

  • Münch G, Nguyen N, Nekolla S et al (2000). Evaluation of sympathetic nerve terminals with 11C-epinephrine and 11C-hydroxyephedrine and positron emission tomography. Circulation 101:516–523

    PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  • Naghavi M, Falk E, Hecht HS, et al (2006) From vulnerable plaque to vulnerable patient—Part III: Executive summary of the screening for heart attack prevention and education (SHAPE) task force report. Am J Cardiol 98(2A):2H–15H

    Article  PubMed  Google Scholar 

  • Nitzsche EU, Choi Y, Czernin J, et al (1996) Noninvasive quan-tification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques. Circulation 93:2000–2006

    PubMed  CAS  Google Scholar 

  • Opie LH, Owen P (1975) Assessment of myocardial free NAD + /NADH ratios and oxaloacetate concentrations during increased mechanical work in isolated perfused rat heart during production or uptake of ketone bodies. Biochem J 148:403–415

    PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  • Poe ND, Robinson GD Jr, Zielinski FW (1977) Myocardial imaging with 123I-hexadecenoic acid. Radiology 124:419–24

    PubMed  CAS  Google Scholar 

  • Raffel DM, Wieland DM (2001) Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 28:541–559

    Article  PubMed  CAS  Google Scholar 

  • Rosenpire KC, Haka MS, Jewett DM et al (1990). Synthesis and preliminary evaluation of 11C-meta-hydroxyephedrine: a false neurotransmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    Google Scholar 

  • Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  • Rudd JH, Warburton EA, Fryer TD, et al (2002). Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  PubMed  CAS  Google Scholar 

  • Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451:953–957

    Article  PubMed  CAS  Google Scholar 

  • Schaèfers M, Riemann B, Levkau B et al (2002) Current status and future applications of cardiac receptor imaging with positron emission tomography Nucl Med Commun 23:113–115

    Article  Google Scholar 

  • Schafers M, Riemann B, Kopka K, et al (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109:2554–2559

    Article  PubMed  CAS  Google Scholar 

  • Schelbert HR (2004) Positron emission tomography of the heart: methodology, findings in the normal and disease heart, and clinical applications. In: Phelps ME (ed) PET: molecular imaging and its clinical applications. Springer, New York

    Google Scholar 

  • Schön HR, Schelbert HR, Robinson et al (1982) C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 103:532–547

    Article  PubMed  Google Scholar 

  • Schwaiger M, Bengel FM (2003) From thallium scan to molecular imaging. Mol Imaging Biol 4:387–398

    Google Scholar 

  • Sciacca RR, Akinboboye O, Chou RL et al (2001) Measurement of myocardial blood flow with PET using 1−11Cacetate. J Nucl Med 42:63–70

    PubMed  CAS  Google Scholar 

  • Sinusas AJ, Zaret BL (1995) Coronary artery disease. In Wagner HN, Szabo Z, Buchanan JW (eds): Principles of Nuclear Medicine, ed 2, Saunders, Philadelphia, Saunders

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyg-lucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Spagnoli LG, Bonanno E, Sangiorgi G et al (2007) Role of inflammation in atherosclerosis. J Nucl Med 48:1800–1815

    Article  PubMed  Google Scholar 

  • Stone CK, Pooley RA, DeGrado TR et al (1998) Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate. J Nucl Med 39:1690–1696

    PubMed  CAS  Google Scholar 

  • Strauss HW, Harrison K, Langan J.K, et al (1975) Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 51:641–645

    PubMed  CAS  Google Scholar 

  • Strauss HW, Grewal RK, Pandit-Taskar N (2004) Molecular imaging in nuclear cardiology Semin Nucl Med 34:47–55

    Article  PubMed  Google Scholar 

  • Su H, Spinale FG, Dobrucki LW, et al (2005) Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112:3157–3167

    Article  PubMed  CAS  Google Scholar 

  • Taillefer L (2001) Radiolabeled peptides in the detection of deep venous thrombosis. Semin Nucl Med 31:102–123

    Article  PubMed  CAS  Google Scholar 

  • Taki J, Matsunari I (2007) Metabolic imaging using SPECT Eur J Nucl Med Mol Imaging 34:S34–S48

    Article  CAS  Google Scholar 

  • Tamaki N, Magata Y, Takahashi N et al (1992) Myocardial oxida-tive metabolism in normal subjects in fasting, glucose loading and dobutamine infusion states. Ann Nucl Med 6:221–228

    Article  PubMed  CAS  Google Scholar 

  • Tamaki N, Morita K, Kuge Y et al (2000) The Role of Fatty Acids in Cardiac Imaging. J Nucl Med 41:1525–1534

    PubMed  CAS  Google Scholar 

  • Taylor M, Wallhaus TR, Degrado TR et al (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecatnoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med 42:55–62

    PubMed  CAS  Google Scholar 

  • Thakur ML, Pallela VR, Consigny PM, et al (2000) Imaging vascular thrombosis with 99 mTc-labeled fibrin α-chain pep-tide. J Nucl Med 41:161–168

    PubMed  CAS  Google Scholar 

  • Tillisch J, Brunken R, Marshall R et al (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    PubMed  CAS  Google Scholar 

  • Travin MI and Bergmann SR (2005) Assessment of myocardial viability. Semin Nucl Med 35:2–16

    Article  PubMed  Google Scholar 

  • Tseng H, Link JM, Stratton JR et al (2001) Cardiac receptor physiology and its application to clinical imaging: present and future. J Nucl Cardiol 8:390–409

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan G, Zhao XG, Strickland DK, et al (1997) No-carrier-added iodine-131-FIBG: evaluation of an MIBG analog. J Nucl Med 38:330–334

    PubMed  CAS  Google Scholar 

  • Vallabhajosula S, Fuster V (1997) Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 38:1788–1796

    PubMed  CAS  Google Scholar 

  • Vallabhajosula S, Machac J, Knesaurek K et al (1995) Imaging atherosclerotic lesions by PET using [18F]fluorodeoxyglu-cose (FDG): preclinical studies in hypercholesterolemic rabbits. Circulation 92:313

    Google Scholar 

  • Virmani R, Burke AP, Farb F et al (2006) Pathology of the vulnerable plaque J Am Coll Cardiol 47:C13–C18

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, de Silva R, Rhodes CG (1996) Noninvasive quan-tification of regional myocardial metabolic rate of oxygen by 15O2 inhalation and positron emission tomography. Circulation 94:808–816

    PubMed  CAS  Google Scholar 

  • Yamashina S, Yamazaki J-I (2007) Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging 34:S62–S73

    Article  PubMed  CAS  Google Scholar 

  • Wallhaus TR, Taylor M, DeGrado TR et al (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103: 2441–2446

    PubMed  CAS  Google Scholar 

  • Weissberg PL (2004) Noninvasive imaging of atherosclerosis: the biology behind the pictures. J Nucl Med 45:1974–1795

    Google Scholar 

  • Wieland DM, Swanson DP, Brown LE et al (1979) Imaging the adrenal medulla with an I-131-labeled antiadrenergic agent. J Nucl Med. 20:155–158

    PubMed  CAS  Google Scholar 

  • Wieland DM, Brown LE, Rogers WL et al (1981) Myocardial imaging with a radioiodinated norepinephrine storage analog, J Nucl Med 22:22–31

    PubMed  CAS  Google Scholar 

  • Wolters SL, Corsten MF, Reutelingsperger PM et al (2007) Cardiovascular molecular imaging of apoptosis Eur J Nucl Med Mol Imaging 34:S86–S98

    Article  CAS  Google Scholar 

  • Wu JC, Yla-Herttuala S (2005) Human gene therapy and imaging: cardiology. Eur J Nucl Med Mol Imaging 32: S346–S357

    Article  PubMed  Google Scholar 

  • Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505

    Article  PubMed  Google Scholar 

  • Wu JC, Bengel FM, Gambhir SS (2007) Cardiovascular molecular imaging. Radiology 244:337–355

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Molecular Imaging in Cardiology. In: Molecular Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76735-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76735-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76734-3

  • Online ISBN: 978-3-540-76735-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics