Skip to main content

Optical Plasma Diagnostics During Reactive Magnetron Sputtering

  • Chapter
Reactive Sputter Deposition

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 109))

Magnetron plasmas are used to sputter metal in pure Ar gas and in Ar–N2, Ar–O2 gas mixtures for reactive sputtering to synthesize pure metal thin films or their corresponding nitride and oxide compounds.

Since the 70s, several plasma diagnostics tools have been developed [1–3]. Amongst them, optical diagnostic methods are playing a very important role to characterize magnetron plasmas. Optical diagnostics are “in situ” experimental methods which allow studying the plasma composition as excited and metastable atoms, ions, molecules and radicals (from dissociated reactive molecules such as oxygen or nitrogen). Sputtered metal atoms and their respective ionic populations are analysed as well to estimate the ionization rate of the metallic vapour. The later is a very important parameter for thin film growth. These diagnostic tools also offer the advantage of being non-intrusive, easy to use, and generally inexpensive.

The optical emission spectroscopy (OES) of magnetron plasmas is first described in Sect. 9.2. However, by OES, only the radiative plasma species are detected. These species only represent a small fraction (~10−8) of the total density of the species considered [4]. Therefore, to study the whole plasma population, we will show how to interpret the measured emission intensities by means of kinetic equations involving ground and radiative states. In Sect. 9.3, we show how to measure the absolute atom densities thanks to atomic absorption spectroscopy (AAS) and, in Sect. 9.4, thanks to laser induced fluorescence (LIF). The effect of the amplification of a DC magnetron plasma by means of a secondary inductively coupled plasma produced by a RF coil superimposed to the magnetron cathode is also presented. In the case of the well-known transition from metal to poisoned regime in reactive sputtering of titanium nitride, we demonstrate that there is a correlation between neutral titanium density, as determined by AAS, and the Ti+ signal obtained from glow discharge mass spectroscopy (GDMS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Lochte-Holtgreven, Plasma Diagnostics, 2nd edn. (AVS Classics, 1995)

    Google Scholar 

  2. V. Donnelly, Plasma Surface Interactions and Processing of Materials, vol. 176, Nato ASI Series E, 1990

    Google Scholar 

  3. B. Preppernau, T. Miller, Glow Discharge Spectroscopies (Plenum, New York, 1995)

    Google Scholar 

  4. A. Ricard, Reactive Plasmas, 1 edn. (SFV, Paris, 1996)

    Google Scholar 

  5. C. Nouvellon, S. Konstantinidis. J.P. Dauchot, M. Wautelet, P.Y. Jouan, A. Ricard, M. Hecq, J. Appl. Phys. 92, 32 (2002)

    Article  ADS  CAS  Google Scholar 

  6. A. Ricard, Thin Solid Films 475, 1–5 (2005)

    Article  ADS  CAS  Google Scholar 

  7. A. Ricard, C. Nouvellon, S. Konstantinidis, J.P. Dauchot, M. Wautelet, M. Hecq, L. Bombillon, C. Heau, Vide, 304-2/4, 258–271 (2002) (special issue of 2ème journéed’étude sur les nouvelles tendances en procédés magnetron at arc pour le depot de couches minces, Orsay, 15-15 Nov. 2001, Edited by SFV http://www.vide.org)

  8. M. Gaillard, N. Britun, J.G. Han, J. Phys. D: Appl. Phys. 40, 809–817 (2007)

    Article  ADS  CAS  Google Scholar 

  9. S. Konstantinidis, C. Nouvellon, J.P. Dauchot, M. Wautelet, M. Hecq, Surf. Coat. Technol. 174–175, 100 (2003)

    Article  CAS  Google Scholar 

  10. A. Belkind, W. Zhu, J. Lopez, K. Becker, Plasma Sources Sci. Technol. 15, S17 (2006)

    Article  ADS  Google Scholar 

  11. J. Lopez, W. Zhu, A. Freilich, A. Belkind, K. Becker, J. Phys. D: Appl. Phys. 38, 1769 (2005)

    Article  ADS  CAS  Google Scholar 

  12. M.V. Malyshev, V.M. Donnelly, J. Appl. Phys. 88(11), 6207 (2000)

    Article  Google Scholar 

  13. S. Konstantinidis, A. Ricard, M. Ganciu, J.P. Dauchot, C. Ranea, M. Hecq, J. Appl. Phys. 95, 2900–2905 (2004)

    Article  ADS  CAS  Google Scholar 

  14. M.F. Dony, A. Ricard, J.P. Dauchot, M. Hecq, M. Wautelet, Surf. Coat. Technol. 74–75, 479–484 (1995)

    Article  Google Scholar 

  15. D.W. Hoffman, J. Vac. Sci. Technol. A 3, 561 (1985)

    Article  ADS  CAS  Google Scholar 

  16. S.M. Rossnagel, J. Vac. Sci. Technol. A 6(1), 19 (1988)

    Article  ADS  CAS  Google Scholar 

  17. A. Ricard, C. Nouvellon, S. Konstantinidis, J.P. Dauchot, M. Wautelet, M. Hecq, J. Vac. Sci. Technol. A 20, 1488–1491 (2002)

    Article  ADS  CAS  Google Scholar 

  18. N. Britun, M. Gaillard, A. Ricard, Y.M. Kim, K.S. Kim, J.G. Han, J. Phys. D 40, 1022–1029 (2007)

    Article  ADS  CAS  Google Scholar 

  19. L. Xu, N. Sadeghi, V.M. Donnelly, D.J. Economou, J. Appl. Phys. 101, 013304 (2007)

    Article  ADS  CAS  Google Scholar 

  20. L. De Poucques, J.C. Imbert, C. Boisse-Laporte, P. Vasina, J. Bretagne, L. Teule-Gay, M. Touzeau, Plasma Sources Sci. Technol. 14(2), 321–328 (2005)

    Article  CAS  Google Scholar 

  21. Y. Andrews, I. Abraham, J.H. Booske, Z.C. Lu, A.E. Wendt, J. Appl. Phys. 88, 3208 (2000)

    Article  ADS  Google Scholar 

  22. K. Okimura, T. Nakamura, J. Vac. Sci. Technol. A 21(4), 988 (2004)

    Article  ADS  CAS  Google Scholar 

  23. S. Konstantinidis, A. Ricard, R. Snyders, H. Vandeparre, J.P. Dauchot, M. Hecq, Surf. Coat. Technol. 200, 841–845 (2005)

    Article  CAS  Google Scholar 

  24. T. Nakamura, K. Okimura, J. Vac. Sci. Technol. A 20(1), 1 (2002)

    Article  ADS  CAS  Google Scholar 

  25. J. Jolly, J. Phys. III, 5, 1089 (1995) in French

    Article  CAS  MathSciNet  Google Scholar 

  26. W. Demtröder, Laser Spectroscopy (Springer, Berlin Heidelberg New York, 1996), p. 414

    Google Scholar 

  27. E. Piepmeier, Spectrochem. Acta B, 27, 431–443 (1971)

    Article  ADS  Google Scholar 

  28. J. Kinsey, Annu. Rev. Phys. Chem. 28, 349–372 (1977)

    Article  CAS  Google Scholar 

  29. V. Ochkin, S. Savinov, S. Tskhai, U. Czarnetzki, V.S. von der Gathen, H. D’bele, IEEE Trans. Plasma Sci. 26, 1502–1513 (1998)

    Article  ADS  Google Scholar 

  30. P. Dagdigian, H. Cruse, R. Zare, J. Chem. Phys. 62, 1824–1833 (1975)

    Article  ADS  CAS  Google Scholar 

  31. I. Hertel, H. Hofmann, K. Rost, J. Phys. E: Sci. Instrum. 8, 1023–1026 (1975)

    Article  ADS  CAS  Google Scholar 

  32. T. Miller, JVST A 4, 1768–1772 (1986)

    ADS  CAS  Google Scholar 

  33. B. Krames, T. Glenewinkel-Meyer, J. Meichsner, J. Appl. Phys. 89, 3115–3120 (2001)

    Article  ADS  CAS  Google Scholar 

  34. B. krames, T. Glenewinkel-Meyer, J. Meichsner, J. Phys. D: Appl. Phys. 34, 1789–11798 (2001)

    Article  ADS  CAS  Google Scholar 

  35. D. Zimmerman, R. McWilliams, D. Edrich, Plasma Sources Sci. Technol. 14, 581–588 (2005)

    Article  ADS  Google Scholar 

  36. A. Bogaerts, E. Wagner, B. Smith, J. Winefordner, D. Pollmann, W. Harrison, R. Gijbels, Spectrochimica Acta Part B, 52, 205–218 (1997)

    Article  ADS  Google Scholar 

  37. T. Williamson, G. Martin, A. El-Astal, A. Al-Khateeb, I. Weaver, D. Riley, M. Lamb,T. Morrow, C. Lewis, Appl. Phys. A 69, S859–S863 (1999)

    Article  ADS  CAS  Google Scholar 

  38. G. Davis, R. Gottscho, J. Appl. Phys. 54, 3080–3086 (1983)

    Article  ADS  CAS  Google Scholar 

  39. Y. Sung, Y. Zhu, M. Otsubo, C. Honda, IEEE Trans. Plasma Sci. 33, 1491–1496 (2005)

    Article  ADS  CAS  Google Scholar 

  40. N. Nafarizal, N. Takada, K. Shibagaki, K. Nakamura, Y. Sago, K. Sasaki, Jpn. J. Appl. Phys. 44, L737–L739 (2005)

    Article  ADS  CAS  Google Scholar 

  41. K. Shibagaki, N. Nafaziral, K. Sasaki, J. Appl. Phys. 98 (2005)

    Google Scholar 

  42. D. Gracin, R. Denkelmann, S. Maurmann, Z. Andreić, Contrib. Plasma Phys. 40, 120–125 (2000)

    Article  ADS  CAS  Google Scholar 

  43. M. Goeckner, J. Goree, T. Sheridan, JVST A 8, 3920–3924 (1990)

    ADS  CAS  Google Scholar 

  44. Y. Choi, M. Bowden, K. Muraoka, Jpn. J. Appl. Phys. 35, 5858–5861 (1996)

    Article  ADS  CAS  Google Scholar 

  45. S.M. Rossnagel, Thin Solid Films 263, 1 (1995)

    Article  ADS  CAS  Google Scholar 

  46. A. Yonesu, T. Kato, H. Takemoto, N. Nishimura, Y. Yamashiro, Jpn. J. Appl. Phys. 38, 4326 (1999)

    Article  ADS  CAS  Google Scholar 

  47. C. Boisse-Laporte, O. Leroy, L. de Poucques, B. Agius, J. Bretagne, M.C. Hugon, L. Teule-Gay, M. Touzeau, Surf Coat. Technol. 179(2–3), 176 (2004)

    Article  CAS  Google Scholar 

  48. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513, 1 (2006)

    Article  ADS  CAS  Google Scholar 

  49. V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, I. Petrov, Surf. Coat. Technol. 122, 290 (1999)

    Article  CAS  Google Scholar 

  50. S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, M. Hecq, J. Appl. Phys. 99-1, 13307 (2006)

    Article  ADS  CAS  Google Scholar 

  51. J. Bohlmark, J. Alami, C. Christou, A.J. Vac. Sci. Technol. A 23(1), 18 (2005)

    Article  ADS  CAS  Google Scholar 

  52. H.Y. Lee, Y.M. Kim, J.G. Han, in Proceedings of the 48th technical annual conference of the Society of Vacuum Coaters, Denver, USA, 2005, p. 726

    Google Scholar 

  53. A.P. Ehiasarian, R. New, W.-D. Munz, L. Hultman, U. Helmersson, V. Kouznetsov, Vacuum 65, 147 (2002)

    Article  CAS  Google Scholar 

  54. K. Macak, V. Kouznetsov, J. Schneider, U. Helmersson, J. Vac. Sci. Technol. A 18(4), 1533 (2000)

    Article  ADS  CAS  Google Scholar 

  55. P. Vasina, M. Mesko, M. Ganciu, J. Bretagne, C. Boisse-Laporte, L. De Poucques, M. Touzeau, Europhys. Lett. 72(3), 390 (2005)

    Article  CAS  Google Scholar 

  56. J. Vlcek, P. Belsky, A.D. Pajdarova, M. Kormunda, J. Lestina, J. Musil, in Proceedings of the XIV International Conference on Gas Discharges and their Applications, Liverpool, UK, 2002, p. 92

    Google Scholar 

  57. S. Konstantinidis, A. Ricard, M. Ganciu-Petcu, J.P. Dauchaut, M. Wautelet, M. Hecq, Proceedings of the 46th Annual Technical Conference of the Society of Vacuum Coaters, San Francisco, USA, 2003, p. 452

    Google Scholar 

  58. L. de Poucques, J.C. Imbert, C. Boisse-Laporte, P. Vasina, J. Bretagne, L. Teule-Gay, M. Touzeau, Plasma Sources Sci. Technol. 14(2), 321 (2005)

    Article  CAS  Google Scholar 

  59. S. Konstantinidis, M. Ganciu, J.P. Dauchot, M. Hecq, App. Phys. Lett. 88-1, 21501 (2006)

    Article  CAS  Google Scholar 

  60. L. de Poucques, J.C. Imbert, C. Boisse-Laporte, J. Bretagne, M. Ganciu, L. Teule-Gay, M. Touzeau, Plasma. Source Sci. Technol. 15, 661 (2006)

    Article  ADS  CAS  Google Scholar 

  61. J.A. Davies, W.D. Sproul, D.J. Christie, M. Geisler, in Proceedings of the 47th Annual Technical Conference of the Society of Vacuum Coaters, Dallas, USA, 2004, p. 215

    Google Scholar 

  62. D.A. Glocker, M.M. Romach, D.J. Christie, W.D. Sproul, in Proceedings of the 47th Annual Technical Conference of the Society of Vacuum Coaters, Dallas, USA, 2004, p. 183

    Google Scholar 

  63. S. Konstantinidis, J.P. Dauchot, M. Hecq, Thin Solid Films 515, 2006, 1182

    Google Scholar 

  64. A.P. Ehiasarian, W.-D. Munz, L. Hultman, U. Helmersson, I. Petrov, Surf. Coat. Technol. 163–164, 267 (2003)

    Article  Google Scholar 

  65. J. Alami, P. Ecklund, J. Emmerlich, O. Wilhelmesson, U. Jansson, H. Hogberg, L. Hultman, U. Helmersson, Thin Solid Films 515, 1731 (2006)

    Article  ADS  CAS  Google Scholar 

  66. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101(1), 13301 (2007)

    Article  CAS  Google Scholar 

  67. V. Vancoppenolle, P.Y. Jouan, A. Ricard, M. Wautelet, J.P. Dauchot, M. Hecq, Appl. Surf. Sci. 205(1–4), 249 (2003)

    Article  Google Scholar 

  68. R. Snyders, R. Gouttebaron, J.P. Dauchot, M. Hecq, Surf. Coat. Technol. 200(1–4), 448 (2205)

    Google Scholar 

  69. J. Alami, P.O.A. Persson, D. Music, J.T. Gudmundsson, J. Bohlmark, U. Helmersson, J. Vac. Sci. Technol. A 23(2), 278 (2005)

    Article  ADS  CAS  Google Scholar 

  70. B.M. Dekoven, P.R. Ward, R.E. Weiss, D.J. Christie, R.A. Scholl, W.D. Sproul, F. Tomasel, A. Anders, in Proceedings of the 46th Annual Technical Conference of the Society of Vacuum Coaters, San Francisco, USA, 2003, p. 158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konstantinidis, S., Gaboriau, F., Gaillard, M., Hecq, M., Ricard, A. (2008). Optical Plasma Diagnostics During Reactive Magnetron Sputtering. In: Depla, D., Mahieu, S. (eds) Reactive Sputter Deposition. Springer Series in Materials Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76664-3_9

Download citation

Publish with us

Policies and ethics