Skip to main content

Energy Deposition at the Substrate in a Magnetron Sputtering System

  • Chapter
Reactive Sputter Deposition

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 109))

In any deposition process, the effective energy deposited onto a surface of a substrate material by the depositing and reactive particles is essential to understanding the mechanism of film growth on the surface [1–4]. For low-pressure plasmas, such as with the magnetron sputtering process, these particles include electrons, ions, neutrals, etc. [2,5–9], which interact with the surfaces and each other through collisions and or chemical reactions. It should be evident therefore that the energy flux onto a substrate depends on the process conditions, such as magnetron power, pressure, geometry, etc. [2, 5, 8]. The deposited energy causes the effective temperature of the growing film to rise [10].

As the particles arrive at the substrate, they transfer momentum, and increase the mobility of the particles at the surface of the growing film [3, 4]. They also cause peening, increasing density and comprehensive stress [11–17]. Apart from surface mobility, the reaction rates/pathways are greatly influenced by this incident energy, and hence the micro- and nanostructure and the properties of the growing film depend strongly on the energy management [18-24]. The relationship between substrate temperature and film properties, such as columnar structure, grain size, etc., has been well established [25–31]. The density and temperature of the plasma species at the substrate region have been shown to also affect the properties of the deposited film [32–34]. Gas pressure, as a process parameter, affects the kinetic energy of the deposited species as well as the characteristics of the plasma [7, 8, 35, 36], hence it may be said to have an important indirect effect on the micro- and nanostructural evolution of the film. Since these effects determine the effective energy deposited [36], then, energy flux onto the substrate is one of the important parameters in many high performance thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.A. Movchan, A.V. Demshishin, Phys. Met. Metallogr. 28, 83 (1969)

    Google Scholar 

  2. J.A. Thornton, Thin Solid Films 54, 23 (1978)

    Article  ADS  CAS  Google Scholar 

  3. J. Greene, in Handbook of Deposition Technologies for Films and Coatings: Science and Technology, Applications, 2nd edn., ed. by R.F. Bunshah (Noyes Publications, Park Ridge, 1994), p. 681

    Google Scholar 

  4. S. Mahieu, P. Ghekiere, D. Depla, R. De Gryse, Thin Solid Films 515, 1229 (2006)

    Article  ADS  CAS  Google Scholar 

  5. T.P. Drusedau, T. Bock, T.-M. John, F. Klabunde, J. Vac. Sci. Technol. A 17(5), 2896 (1999)

    Article  ADS  CAS  Google Scholar 

  6. H. Kersten, H. Deutsch, H. Steffen, G.M.W. Kroesen, R. Hippler, Vacuum 63, 385 (2001)

    Article  CAS  Google Scholar 

  7. S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A 20, 1877 (2002)

    Article  ADS  CAS  Google Scholar 

  8. S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A 21, 476 (2003)

    Article  ADS  CAS  Google Scholar 

  9. L.G. Jacobson, F.L. Freire Jr., J. Vac. Sci. Technol. A 17, 2841 (1999)

    Article  ADS  Google Scholar 

  10. S.S. Lau, R.H. Mills, D.G. Muth, J. Vac. Sci. Technol. 9, 1196 (1972)

    Article  ADS  CAS  Google Scholar 

  11. H. Windischmann, Crit. Rev. Solid State Mat. Sci. 17, 547 (1992)

    Article  Google Scholar 

  12. S.D. Bernstein, T.Y. Wong, R.W. Tustison, J. Vac. Sci. Technol. B 12, 606 (1994)

    Article  Google Scholar 

  13. M. Chinmulgund, R.B. Inturi, J.A. Barndard, Thin Solid Films 270, 260 (1995)

    Article  ADS  CAS  Google Scholar 

  14. D. Liu, S.K. Dew, M.J. Brett, T. Janacek, T. Smy, Thin Solid Films 236, 267 (1993)

    Article  ADS  CAS  Google Scholar 

  15. C.-T. Wei, H.-P. Shieh, Jpn. J. Appl. Phys. 45, 6405 (2006)

    Article  ADS  CAS  Google Scholar 

  16. T. Takahashi, H. Nakabayashi, T. Terasawa, K. Masugata, J. Vac. Sci. Technol. A 20, 1205 (2002)

    Article  ADS  CAS  Google Scholar 

  17. C.-H. Lee, H.-Y. Lee, K.S. Liang, T.-B. Wu, Physica B 248, 109 (1998)

    Article  ADS  CAS  Google Scholar 

  18. S. Mahieu, G. Buyle, D. Depla, S. Heirwegh, P. Ghekiere, R. De Gryse, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 243, 313 (2006)

    Article  ADS  CAS  Google Scholar 

  19. J. Bretagne, C.B. Laporte, G. Gousset, O. Leroy, T.M. Minea, D. Pagnon, L. De Poucques, M. Touzeau, Plasma Sources Sci. Technol. 12, S33 (2003)

    Article  ADS  Google Scholar 

  20. A. Subrahmanyam, K. Valleti, S. Joshi, G. Sundararajan, J. Vac. Sci. Technol. A 25, 378 (2007)

    Article  CAS  Google Scholar 

  21. Y. Jung, J. Seo, D.W. Lee, D. Jeon, Thin Solid Films 445, 63 (2003)

    Article  ADS  CAS  Google Scholar 

  22. J. Kikuchi, S. Fujimura, R. Kurosaki, H. Yano, J. Vac. Sci. Technol. A 15(4), 2035 (1997)

    Article  ADS  CAS  Google Scholar 

  23. R.R. Chromik, W.K. Neils, E.J. Cotts, J. Appl. Phys. 86, 4273 (1999)

    Article  ADS  CAS  Google Scholar 

  24. T.T. Lay, Y. Yoshitake, B. Mebarki, J. Vac. Sci. Technol. A 20, 2027 (2002)

    Article  ADS  CAS  Google Scholar 

  25. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  ADS  CAS  Google Scholar 

  26. J.A. Thornton, J. Tabock, W. Hoffman, Thin Solid Films 11, 111 (1979)

    Article  ADS  Google Scholar 

  27. D.W. Hoffman, J.A. Thornton, J. Vac. Sci. Technol. 20, 355 (1982)

    Article  ADS  CAS  Google Scholar 

  28. J.A. Thornton, D.W. Hoffman, J. Vac. Sci. Technol. A 3, 576 (1985)

    Article  ADS  CAS  Google Scholar 

  29. K.-H. Muller, J. Appl. Phys. 62, 1796 (1987)

    Article  ADS  Google Scholar 

  30. H. Windischmann, J. Vac. Sci. Technol. 9, 2431 (1991)

    Article  ADS  Google Scholar 

  31. D.W. Hoffman, Thin Solid Films 107, 353 (1983)

    Article  ADS  CAS  Google Scholar 

  32. S.M. Rossnagel, M.A. Russak, J.J. Cuomo, J. Vac. Sci. Technol A 5, 2150 (1987)

    Article  ADS  CAS  Google Scholar 

  33. S. Hosokawa, A. Konishi, K. Hiratsuka, K. Annoh, Thin Solid Films 73, 115 (1980)

    Article  ADS  Google Scholar 

  34. C. Wyon, R. Gillet, L. Lombard, Thin Solid Films 122, 203 (1984)

    Article  ADS  CAS  Google Scholar 

  35. S.K. Dew, T. Smy, M. Brett, Jpn. J. Appl. Phys. 33(Part 1), 1140 (1994)

    Google Scholar 

  36. S.D. Ekpe, PhD Thesis, University of Alberta, Edmonton, 2005

    Google Scholar 

  37. R. Wendt, K. Ellmer, K. Wiesemann, J. Appl. Phys. 82, 2115 (1997)

    Article  ADS  CAS  Google Scholar 

  38. J.E. Daugherty, D.B. Graves, J. Vac. Sci. Technol. A 11, 1126 (1993)

    Article  ADS  CAS  Google Scholar 

  39. J.F. Behnke, T. Bindemann, H. Deutsch, K. Becker, Contib. Plasma Phys. 37, 345 (1997)

    Article  ADS  CAS  Google Scholar 

  40. H.F. Winters, H.J. Coufai, W. Eckstein, J. Vac. Sci. Technol. 11, 657 (1993)

    Article  ADS  CAS  Google Scholar 

  41. D.H. Zhang, D.E. Drodie, Thin Solid Films 251, 151 (1994)

    Article  ADS  CAS  Google Scholar 

  42. R.P. Howson, H.A. J’afer, A.G. Spencer, Thin Solid Films 193/194, 127 (1990)

    Google Scholar 

  43. H. Kersten, G.M.W. Kroesen, H. Hippler, Thin Solid Films 332, 282 (1998)

    Article  ADS  CAS  Google Scholar 

  44. Z. Dohnalek, S. Mezhenny, I. Lyubinetsky, W.J. Choyke, J.T. Yates Jr., J. Vac. Sci. Technol. A 15(5), 2766 (1997)

    Article  ADS  CAS  Google Scholar 

  45. H. Nishino, W. Yang, Z. Dohnalek, V.A. Ukraintsev, W.J. Choyke, J.T. Yates Jr., J. Vac. Sci. Technol. A 15(1), 182 (1997)

    Article  ADS  CAS  Google Scholar 

  46. T.M. Berlicki, J. Vac. Sci. Technol. A 19(1), 325 (2001)

    Article  ADS  CAS  Google Scholar 

  47. O. Eyal, V. Scharf, A. Katzir, Appl. Phys. Lett. 70(12), 1509 (1997)

    Article  Google Scholar 

  48. A. Matthews, D.T. Gethin, Thin Solid Films 117, 261 (1984)

    Article  ADS  CAS  Google Scholar 

  49. S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A 22, 1420 (2004)

    Article  ADS  CAS  Google Scholar 

  50. A.-L. Thomann, N. Semmar, R. Dussart, J. Mathias, V. Lang, Rev. Sci. Instrum. 77, 033501 (2006)

    Article  ADS  CAS  Google Scholar 

  51. D. McCammon, R. Almy, E. Apodaca, S. Deoker, M. Galeazzi, S.-I. Han, A. Lesser, W. Sanders, R.L. Kelley, S.H. Moseley, F.S. Porter, C.K. Stahle, A.E. Szymkowiak, Nucl. Instrum. Methods Phys. Res. A 436, 205 (1999)

    Article  ADS  CAS  Google Scholar 

  52. K.D. Irwin, G.C. Hilton, D.A. Wollman, J.M. Martinis, J. Appl. Phys. 83, 3978 (1998)

    Article  ADS  CAS  Google Scholar 

  53. S.D. Ekpe, S.K. Dew, J. Phys. D. Appl. Phys. 39, 1413 (2006)

    Article  CAS  Google Scholar 

  54. S.M. Rossnagel, J. Vac. Sci. Technol. A 6, 19 (1988)

    Article  ADS  CAS  Google Scholar 

  55. A. Palmero, H. Rudolph, F. Habraken, Appl. Phys. Lett. 87, 071501 (2005)

    Article  ADS  CAS  Google Scholar 

  56. G.M. Turner, J. Vac. Sci. Technol. A 13, 2161 (1995)

    Article  ADS  CAS  Google Scholar 

  57. F. Jimenez, S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A 24, 1530 (2006)

    Article  CAS  Google Scholar 

  58. S.D. Ekpe, L.W. Bezuidenhout, S.K. Dew, Thin Solid Films 474, 330 (2005)

    Article  ADS  CAS  Google Scholar 

  59. G.M. Turner, I.S. Falconer, B.W. James, D.R. Mckenzie, J. Appl. Phys. 65, 3671 (1989)

    Article  ADS  Google Scholar 

  60. M. Andritschky, F. Guimaraes, V. Teixeira, Vacuum 44(8), 809 (1993)

    Article  CAS  Google Scholar 

  61. J. Houska, J. Vlcek, S. Potocky, V. Perina, Diam. Relat. Mat. 16, 29 (2007)

    Article  CAS  Google Scholar 

  62. F. Medjani, R. Sanjines, G. Allidi, A. Karimi, Thin Solid Films 515, 260 (2006)

    Article  ADS  CAS  Google Scholar 

  63. D.J. Ball, J. Appl. Phys. 43, 3047 (1972)

    Article  ADS  CAS  Google Scholar 

  64. S.M. Rossnagel, H.R. Kaufman, J. Vac. Sci. Technol. A 4, 1822 (1986)

    Article  ADS  CAS  Google Scholar 

  65. P. Spatenka, J. Vlcek, J. Blazek, Vacuum 55, 165 (1999)

    Article  CAS  Google Scholar 

  66. D.J. Field, S.K. Dew, R.E. Burrell, J. Vac. Sci. Technol A 20, 2032 (2002)

    Article  ADS  CAS  Google Scholar 

  67. H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler, Thin Solid Films 377/378, 585 (2000)

    Google Scholar 

  68. S.M. Rossnagel, H.R. Kaufman, J. Vac. Sci. Technol. A 6, 223 (1988)

    Article  ADS  CAS  Google Scholar 

  69. M. Dickson, F. Qian, J. Hopwood, J. Vac. Sci. Technol. A 15, 304 (1997)

    Google Scholar 

  70. T.P. Drusedau, K. Koppenhagen, Surf. Coat. Technol. 153, 155 (2002)

    Article  CAS  Google Scholar 

  71. J.M. Andersson, E. Wallin, E.P. Munger, U. Helmersson, J. Appl. Phys. 100, 033305 (2006)

    Article  ADS  CAS  Google Scholar 

  72. C. Paturaud, G. Farges, M.C. Sainte Catherine, J. Machet, Surf. Coat. Technol. 98, 1257 (1998)

    Article  CAS  Google Scholar 

  73. M. Stepanova, S.K. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001)

    Article  ADS  CAS  Google Scholar 

  74. M.W. Thompson, Phil. Mag. 18, 377 (1968)

    Article  ADS  CAS  Google Scholar 

  75. W.D. Westwood, J. Vac. Sci. Technol. 15, 1 (1978)

    Article  ADS  CAS  Google Scholar 

  76. L.G. Christophorou, Atomic and Molecular Radiation Physics, (Wiley Interscience, New York, 1997), p. 35

    Google Scholar 

  77. V.V. Serikov, K. Nanbu, J. Appl. Phys. 82, 5948 (1997)

    Article  ADS  CAS  Google Scholar 

  78. H. Kersten, H. Steffen, D. Vender, H.E. Wagner, Vacuum 46, 305 (1995)

    Article  CAS  Google Scholar 

  79. J. Houska, J. Vlcek. S. Potocky, V. Perina, Diam Rel. Mat. 16, 29 (2007)

    Article  CAS  Google Scholar 

  80. F. Medjani, R. Sanjines, G. Allidi, A. Karimi, Thin Solid Films 515, 260 (2006)

    Article  ADS  CAS  Google Scholar 

  81. J.-L. Ruan, J.-L. Huang, J.S. Chen, D.-F. Lii, Surf. Coat. Technol. 200, 1652 (2005)

    Article  CAS  Google Scholar 

  82. D.A. Glocker, J. Vac. Sci. Technol. A 11, 2989 (1993)

    Article  ADS  CAS  Google Scholar 

  83. J.M.E. Harper, J.J. Cuomo, R.J. Gambino, H.R. Kaufman, R.S. Robinson, J. Vac. Sci. Technol. 15, 1597 (1978)

    Article  ADS  CAS  Google Scholar 

  84. J.W. Lee, J.J. Cuomo, J. Vac. Sci. Technol. A 22, 260 (2004)

    Article  ADS  CAS  Google Scholar 

  85. A.J. Chapman, Heat Transfer, 2nd edn. (Macmillan Company, New York, 1967)

    Google Scholar 

  86. F.J. Bayley, J.M. Owen, A.B. Turner, Heat Transfer, (Nelson, Great Britain, 1972)

    Google Scholar 

  87. D. R. Lide (Editor-in-Chief), Handbook of Chemistry and Physics, (CRC Press, Boca Raton, 1991)

    Google Scholar 

  88. A. Matthews, Vacuum 32, 311 (1982)

    Article  CAS  MathSciNet  Google Scholar 

  89. T.J. Love, Radiative Heat Transfer, (Merrill, New York, 1968)

    Google Scholar 

  90. J.R. Simonsen, An Introduction to Engineering Heat Transfer, (McGraw-Hill, New York, 1967)

    Google Scholar 

  91. J.A. Thornton, J.L. Lamb, Thin Solid Films 119, 87 (1984)

    Article  ADS  CAS  Google Scholar 

  92. J.A. Thornton, Thin Solid Films 80, 1 (1981)

    Article  ADS  CAS  Google Scholar 

  93. A. Cortona, W. Husinsky, G. Betz, Phys. Rev. B 59, 15496 (1999)

    Article  ADS  Google Scholar 

  94. G. Este, W.D. Westwood, J. Vac. Sci. Technol. A 2, 1238 (1984)

    Article  ADS  CAS  Google Scholar 

  95. S. Berg, T. Nyberg, Thin Solid Films 476, 215 (2005)

    Article  ADS  CAS  Google Scholar 

  96. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101, 013301 (2007)

    Article  ADS  CAS  Google Scholar 

  97. S.A. Nikitov, Y.V. Gulyaev, A.D. Boardman, Wave. Random Media 6, 61 (1996)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ekpe, S.D., Dew, S.K. (2008). Energy Deposition at the Substrate in a Magnetron Sputtering System. In: Depla, D., Mahieu, S. (eds) Reactive Sputter Deposition. Springer Series in Materials Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76664-3_7

Download citation

Publish with us

Policies and ethics