Skip to main content

Anatomical and Functional Targets of Stress Testing

  • Chapter
Stress Echocardiography
  • 1322 Accesses

The principle of stress under controlled conditions derives from the Industrial Revolution: metallic materials undergo endurance tests to identify the breaking load. This approach identifies structural defects that – although occult in the resting or static state – might show up under real-life loading conditions, leading to a dysfunction of the industrial product. In the same way, a patient with normal findings at rest undergoes a stress test to identify any potential vulnerability of the myocardium to ischemia, if there is clinical suspicion of ischemic heart disease. Myocardial ischemia is the final common pathway of various morphological and functional substrates. In order to describe the pathways of ischemia, the normal heart can be conveniently schematized into its three fundamental anatomical components, each a potential target of pathological conditions leading to ischemia: epicardial coronary arteries, myocardium, and small coronary vessels. Epicardial coronary artery stenoses produce selective stress-induced subendocardial hypoperfusion, which is especially important for stress echocardiography applications, since regional systolic thickening is linearly and closely related to subendocardial perfusion and only loosely related to subepicardial hypoperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baroldi G, Bigi R, Cortigiani L (2004) Ultrasound imaging versus morphopathology in cardiovascular diseases. Coronary atherosclerotic plaque. Cardiovasc Ultrasound 2:29

    Article  PubMed  Google Scholar 

  2. Marcus ML (1983) The coronary circulation in health and disease. McGraw Hill, New York, pp 65–92

    Google Scholar 

  3. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  PubMed  CAS  Google Scholar 

  4. Maseri A (1987) Role of coronary artery spasm in symptomatic and silent myocardial ischemia. J Am Coll Cardiol 9:249–262

    PubMed  CAS  Google Scholar 

  5. Gorlin R, Fuster V, Ambrose JA (1986) Anatomic-physiologic links between acute coronary syndromes. Circulation 74:6–9

    PubMed  CAS  Google Scholar 

  6. Epstein SE, Cannon RO 3rd (1986) Site of increased resistance to coronary flow in patients with angina pectoris and normal epicardial coronary arteries. J Am Coll Cardiol 8:459–461

    PubMed  CAS  Google Scholar 

  7. L'Abbate A, Marzilli M, Ballestra AM, et al (1980) Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog's heart. Cardiovasc Res 14:21–29

    Article  PubMed  Google Scholar 

  8. Ross J Jr (1989) Mechanisms of regional ischemia and antianginal drug action durin exercise. Prog Cardiovasc Dis 31:455–466

    Article  PubMed  Google Scholar 

  9. Gallagher K P, Matsuzaki M, Koziol JA, et al (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727–H738

    PubMed  CAS  Google Scholar 

  10. Marcus ML, White C W, Kirchner PT (1986) Isn't it time to reevaluate the sensitivity of noninva-sive approaches for the diagnosis of coronary artery disease? J Am Coll Cardiol 8:1033–1034

    Article  PubMed  CAS  Google Scholar 

  11. White C W, Wright CB, Doty DB, et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    PubMed  CAS  Google Scholar 

  12. Uren NG, Melin JA, De Bruyne B, et al (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  13. Legrand V, Mancini GB, Bates ER, et al (1986) Comparative study of coronary flow reserve, coronary anatomy and results of radionuclide exercise tests in patients with coronary artery disease. J Am Coll Cardiol 8:1022–1032

    PubMed  CAS  Google Scholar 

  14. Wilson R F, Marcus ML, Christensen B V, et al (1991) Accuracy of exercise electrocardiography in detecting physiologically significant coronary arterial lesions. Circulation 83:412–421

    PubMed  CAS  Google Scholar 

  15. De Bruyne B, Bartunek J, Sys SU, et al (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92:39–46

    PubMed  Google Scholar 

  16. Schulman DS, Lasorda D, Farah T, et al (1997) Correlations between coronary flow reserve measured with a Doppler guide wire and treadmill exercise testing. Am Heart J 134:99–104

    Article  PubMed  CAS  Google Scholar 

  17. Piek JJ, Boersma E, Di Mario C, et al (2000) Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the result of exercise electrocardiography. DEBATE study group. Doppler Endpoints Balloon Angioplasty Trial Europe. Eur Heart J 21:466–474

    Article  PubMed  CAS  Google Scholar 

  18. Joye JD, Schulman DS, Lasorda D, et al (1994) Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 24:940–947

    Article  PubMed  CAS  Google Scholar 

  19. Daimon M, Watanabe H, Yamagishi H, et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiogra-phy: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315

    Article  PubMed  CAS  Google Scholar 

  20. Heller LI, Cates C, Popma J, et al (1997) Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201Tl imaging and coronary angiography. FACTS Study Group. Circulation 96:484–490

    PubMed  CAS  Google Scholar 

  21. El-Shafei A, Chiravuri R, Stikovac MM, et al (2001) Comparison of relative coronary Doppler flow velocity reserve to stress myocardial perfusion imaging in patients with coronary artery disease. Catheter Cardiovasc Interv 53:193–201

    Article  PubMed  CAS  Google Scholar 

  22. Picano E, Parodi O, Lattanzi F, et al (1994) Assessment of anatomic and physiological severity of single-vessel coronary artery lesions by dipyridamole echocardiography. Comparison with positron emission tomography and quantitative arteriography. Circulation 89:753–761

    PubMed  CAS  Google Scholar 

  23. Pijls NH, De Bruyne B, Peels K, et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708

    Article  PubMed  CAS  Google Scholar 

  24. Bartunek J, Marwick TH, Rodrigues AC, et al (1996) Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angio graphy. J Am Coll Cardiol 27:1429–1436

    Article  PubMed  CAS  Google Scholar 

  25. Bortone AS, Hess OM, Eberli FR, et al (1989) Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation 79:516–527

    PubMed  CAS  Google Scholar 

  26. Scheler S, Motz W, Strauer BE (1992) Transient myocardial ischemia in hypertensives: missing link with left ventricular hypertrophy. Eur Heart J 13(Suppl D):62–65

    PubMed  Google Scholar 

  27. Motz W, Strauer BE (1996) Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 27:1031–1038

    PubMed  CAS  Google Scholar 

  28. Di Mario C, Gorge G, Peters R, et al (1998) Clinical application and image interpretation in intracoronary ultrasound. Study Group on Intracoronary Imaging of the Working Group of Coronary Circulation and of the Subgroup on Intravascular Ultrasound of the Working Group of Echocardiography of the European Society of Cardiology. Eur Heart J 19:207–229

    Article  PubMed  Google Scholar 

  29. Erbel R (1996) The dawn of a new era — non-invasive coronary imaging. Herz 21:75–77

    PubMed  CAS  Google Scholar 

  30. Verna E, Ceriani L, Giovanella L, et al (2000) “False-positive” myocardial perfusion scin-tigraphy findings in patients with angiographically normal coronary arteries: insights from intravascular sonography studies. J Nucl Med 41:1935–1940

    PubMed  CAS  Google Scholar 

  31. Spes CH, Klauss V, Rieber J, et al (1999) Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant 18:391–398

    Article  PubMed  CAS  Google Scholar 

  32. Topol EJ, Nissen SE (1992) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    Google Scholar 

  33. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8

    Article  PubMed  Google Scholar 

  34. Rigo F, Cortigiani L, Pasanisi E, et al (2006) The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. A transtoracic vasodilator stress echocardiography study. Am Heart J 151:124–30

    Article  PubMed  Google Scholar 

  35. Neglia D, Michelassi C, Trivieri MG, et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–93

    Article  PubMed  Google Scholar 

  36. Rigo F, Gherardi S, Galderisi M, et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–23

    Article  PubMed  Google Scholar 

  37. Cecchi F, Olivotto I, Gistri R, et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–35

    Article  PubMed  CAS  Google Scholar 

  38. Cortigiani L, Rigo F, Gherardi S et al (2009) Prognostic implications of coronary flow reserve in hypertrophic cardiomyopathy. A Doppler echocardiographyc study. Am J Cardiol 1:36–41

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E. (2009). Anatomical and Functional Targets of Stress Testing. In: Picano, E. (eds) Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76466-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76466-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76465-6

  • Online ISBN: 978-3-540-76466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics