Skip to main content

Extending a Resolution Prover for Inequalities on Elementary Functions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4790))

Abstract

Experiments show that many inequalities involving exponentials and logarithms can be proved automatically by combining a resolution theorem prover with a decision procedure for the theory of real closed fields (RCF). The method should be applicable to any functions for which polynomial upper and lower bounds are known. Most bounds only hold for specific argument ranges, but resolution can automatically perform the necessary case analyses. The system consists of a superposition prover (Metis) combined with John Harrison’s RCF solver and a small amount of code to simplify literals with respect to the RCF theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

    Google Scholar 

  2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. ACM Transactions on Computational Logic (in press)

    Google Scholar 

  3. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical Methods in Computer Science 2(4) (2006)

    Google Scholar 

  4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  5. Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 5–46. North-Holland, Amsterdam (1977)

    Google Scholar 

  6. Beeson, M.: Automatic generation of a proof of the irrationality of e. JSC 32(4), 333–349 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  8. Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica Journal 3(1), 56–71 (1993)

    Google Scholar 

  9. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. Technical Report MIP-9720, Universität Passau, D-94030, Germany (1997)

    Google Scholar 

  10. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)

    Google Scholar 

  11. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)

    Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficient. Springer, Heidelberg (2006) First published in 1983; cited by Mclaughlin and Harrison [15]

    Google Scholar 

  13. Hurd, J.: Metis first order prover (2007), http://gilith.com/software/metis/

  14. McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. Journal of Automated Reasoning 18(2), 211–220 (1997)

    Article  Google Scholar 

  15. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE-20. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)

    Google Scholar 

  16. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.: (eds.) FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, vol. 192 of CEUR Workshop Proceedings, pp. 18–33 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nachum Dershowitz Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akbarpour, B., Paulson, L.C. (2007). Extending a Resolution Prover for Inequalities on Elementary Functions. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75560-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75558-6

  • Online ISBN: 978-3-540-75560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics