Skip to main content

Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

A major issue in the growth of semiconductor crystals is the presence of line defects or dislocations. Dislocations are a major impediment to the usage of III–V and other compound semiconductor crystals in electronic, optical, and other applications. This chapter reviews the origins of dislocations in melt-based growth processes and models for stress-driven dislocation multiplication. These models are presented from the point of view of dislocations as the agents of plastic deformation required to relieve the thermal stresses generated in the crystal during melt-based growth processes. Consequently they take the form of viscoplastic constitutive equations for the deformation of the crystal taking into account the microdynamical details of dislocations such as dislocation velocities and interactions. The various aspects of these models are dealt in detail, and finally some representative numerical results are presented for the liquid encapsulated Czochralski (LEC) growth of InP crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFD:

computational fluid dynamics

CFD:

cumulative failure distribution

CRSS:

critical-resolved shear stress

CZ:

Czochralski

IC:

integrated circuit

IC:

ion chamber

LEC:

liquid encapsulation Czochralski

LED:

light-emitting diode

MASTRAPP:

multizone adaptive scheme for transport and phase change processes

ODE:

ordinary differential equation

SWBXT:

synchrotron white beam x-ray topography

TEM:

transmission electron microscopy

VCZ:

vapor pressure controlled Czochralski

fcc:

face-centered cubic

References

  1. J. Czochralski: Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle, Z. Phys. Chem. 92, 219–221 (1917), in German

    Google Scholar 

  2. G.K. Teal, J.B. Little: Growth of germanium single crystals, Phys. Rev. 78, 647 (1950)

    Google Scholar 

  3. W.C. Dash: Dislocation free silicon crystals. In: Growth and Perfection of Crystals, ed. by R.M. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York 1958)

    Google Scholar 

  4. V. Swaminathan, A.S. Jordan: Dislocations in III/V compounds, Semicond. Semimet. 38, 293–341 (1993)

    Article  Google Scholar 

  5. R.J. Roedel, A.R. Von Neida, R. Caruso, L.R. Dawson: The effect of dislocations in Ga_1-xAl_xAs:Si light-emitting diodes, J. Electrochem. Soc. 126, 637–641 (1979)

    Article  Google Scholar 

  6. J.P. Hirth, J. Lothe: Theory of Dislocations (Krieger, Malabar 1992)

    Google Scholar 

  7. H. Alexander: On dislocation generation in semiconductor crystals, Radiat. Eff. Defects Solids 112(1/2), 1–12 (1989)

    Article  Google Scholar 

  8. B.T. Lee, R. Gronsky, E.D. Bourret: Dislocation loops and precipitates associated with excess arsenic in GaAs, J. Appl. Phys. 64(1), 114–118 (1988)

    Article  ADS  Google Scholar 

  9. J. Lagowski, H.C. Gatos, T. Aoyama, D.G. Lin: Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs, Appl. Phys. Lett. 45(6), 680–682 (1984)

    Article  ADS  Google Scholar 

  10. W. Zulehner: Czochralski growth of silicon, J. Cryst. Growth 65(1–3), 189–213 (1983)

    Article  ADS  Google Scholar 

  11. M.F. Ashby, L. Johnson: On the generation of dislocations at misfitting particles in a ductile matrix, Philos. Mag. 20, 1009–1022 (1969)

    Article  ADS  Google Scholar 

  12. A.S. Jordan, R. Caruso, A.R. Von Neida: A thermoelastic analysis of dislocation generation in pulled GaAs crystals, Bell Syst. Technol. J. 59(4), 593–637 (1980)

    Article  Google Scholar 

  13. N. Kobayashi, T. Iwaki: A thermoelastic analysis of the thermal stress produced in a semi-infinite cylindrical single crystal during the Czochralski growth, J. Cryst. Growth 73, 96–110 (1985)

    Article  ADS  Google Scholar 

  14. M. Duseaux: Temperature profile and thermal-stress calculations in GaAs crystals growing from the melt, J. Cryst. Growth 61(3), 576–590 (1983)

    Article  ADS  Google Scholar 

  15. J.C. Lambropoulos: Stresses near the solid-liquid interface during the growth of a Czochralski crystal, J. Cryst. Growth 80, 245–256 (1987)

    Article  ADS  Google Scholar 

  16. C.E. Schvezov, I.V. Samarasekera, F. Weinberg: Calculation of the shear stress distribution in LEC gallium arsenide for different growth conditions, J. Cryst. Growth 92, 479–488 (1988)

    Article  ADS  Google Scholar 

  17. G.O. Meduoye, K.E. Evans, D.J. Bacon: Modelling of the growth of the LEC technique II. Thermal stress distribution and influence of interface shape, J. Cryst. Growth 97, 709–719 (1989)

    Article  ADS  Google Scholar 

  18. G.O. Meduoye, D.J. Bacon, K.E. Evans: Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals, J. Cryst. Growth 108, 627–636 (1991)

    Article  ADS  Google Scholar 

  19. S. Motakef, K.W. Kelly, K. Koai: Comparison of calculated and measured dislocation density in LEC-grown GaAs crystals, J. Cryst. Growth 113, 279–288 (1991)

    Article  ADS  Google Scholar 

  20. F. Dupret, P. Necodeme, Y. Ryckmans: Numerical method for reducing stress level in GaAs crystals, J. Cryst. Growth 97, 162–172 (1989)

    Article  ADS  Google Scholar 

  21. D.E. Bornside, T.A. Kinney, R.A. Brown: Minimization of thermoelastic stresses in Czochralski grown silicon: Application of the integrated system model, J. Cryst. Growth 108, 779–805 (1991)

    Article  ADS  Google Scholar 

  22. Y.F. Zou, H. Zhang, V. Prasad: Dynamics of melt-crystal interface and coupled convection-stress predictions for Czochralski crystal growth processes, J. Cryst. Growth 166, 476–482 (1996)

    Article  ADS  Google Scholar 

  23. I. Yonenaga, K. Sumino: Impurity effects on the generation, velocity, and immobilization of dislocations in GaAs, J. Appl. Phys. 65, 85–92 (1989)

    Article  ADS  Google Scholar 

  24. J. Lubliner: Plasticity Theory (Macmillan, New York 1990)

    MATH  Google Scholar 

  25. K. Sumino: Mechanical behavior of semiconductors. In: Handbook on Semiconductors, Vol. 3a, ed. by S. Mahajan, T.S. Moss (Elsevier, Amsterdam 1994) pp. 73–181

    Google Scholar 

  26. J. Hornstra: Dislocations in the diamond lattice, J. Phys. Chem. Solids 5, 129–141 (1958)

    Article  ADS  Google Scholar 

  27. H. Alexander: Dislocations in covalent crystals. In: Dislocations in Solids, Vol. 7, ed. by F.R.N. Nabarro (North-Holland, Amsterdam 1986) pp. 113–234

    Google Scholar 

  28. D.J.H. Cockayne, A. Hons: Dislocations in semiconductors as studied by weak-beam electron-microscopy, J. Phys. 40(6), 11–18 (1979)

    Google Scholar 

  29. H. Gottschalk, G. Patzer, H. Alexander: Stacking-fault energy and ionicity of cubic III–V compounds, Phys. Status Solidi (a) 45(1), 207–217 (1978)

    Article  ADS  Google Scholar 

  30. R. Meingast, H. Alexander: Dissociated dislocations in germanium, Phys. Status Solidi (a) 17(1), 229–236 (1973)

    Article  ADS  Google Scholar 

  31. A. George, J. Rabier: Dislocations and plasticity in semiconductors. I – Dislocation structures and dynamics, Rev. Phys. Appl. 22, 941–966 (1987)

    Article  Google Scholar 

  32. W.G. Johnston, J.J. Gilman: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys. 30, 129–144 (1959)

    Article  ADS  Google Scholar 

  33. H. Alexander, P. Haasen: Dislocations and plastic flow in the diamond structure. In: Solid State Physics, Vol. 22, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1968) pp. 28–158

    Google Scholar 

  34. A.R. Chaudhuri, J.R. Patel, L.G. Rubin: Velocities and densities of dislocations in germanium and other semiconductor crystals, J. Appl. Phys. 33, 2736–2746 (1962)

    Article  ADS  Google Scholar 

  35. G.I. Taylor: The mechanism of plastic deformation of crystals. Part I – Theoretical, Proc. R. Soc. Lond. Ser. A 145, 362–387 (1934)

    Article  ADS  MATH  Google Scholar 

  36. F.R.N. Babarro, Z.S. Basinski, D.B. Holt: The plasticity of pure single crystals, Adv. Phys. 13, 193–323 (1964)

    Article  ADS  Google Scholar 

  37. E. Peissker, P. Haasen, H. Alexander: Anisotropic plastic deformation of indium antimonide, Philos. Mag. 7, 1279 (1962)

    Article  ADS  Google Scholar 

  38. I. Yonenaga, K. Sumino: Effects of in impurity on the dynamic behavior of dislocations in GaAs, J. Appl. Phys. 62(4), 1212–1219 (1987)

    Article  ADS  Google Scholar 

  39. I. Yonenaga, K. Sumino: Mechanical properties and dislocation dynamics of GaP, J. Mater. Res. 4(2), 355–360 (1989)

    Article  ADS  Google Scholar 

  40. J. Völkl: Stress in the cooling crystal. In: Handbook of Crystal Growth, Vol. 2, ed. by D.T.J. Hurle (North Holland, Amsterdam 1994) pp. 823–874

    Google Scholar 

  41. H. Siethoff, W. Schröter: Work-hardening and dynamical recovery in silicon and germanium at high-temperatures and comparison with FCC metals, Scr. Metall. 17(3), 393–398 (1983)

    Article  Google Scholar 

  42. H. Siethoff, R. Behrensmeier: Plasticity of undoped GaAs deformed under liquid encapsulation, J. Appl. Phys. 67(8), 3673–3680 (1990)

    Article  ADS  Google Scholar 

  43. H. Siethoff, K. Ahlborn, H.G. Brion, J. Völkl: Dynamical recovery and self-diffusion in InP, Philos. Mag. A 57(2), 235–244 (1988)

    Article  ADS  Google Scholar 

  44. H. Siethoff, W. Schröeter: New phenomena in the plasticity of semiconductors and FCC metals at high temperatures, Z. Metall. 75(7), 475–491 (1984)

    Google Scholar 

  45. A.K. Mukherjee, J.E. Bird, J.E. Dorn: Experimental correlations for high temperature creep, ASM Transactions 62, 155–179 (1969)

    Google Scholar 

  46. C.R. Barrett, W.D. Nix: A Model for steady state creep based on the motion of jogged screw dislocations, Acta Metall. 13, 1247–1258 (1965)

    Article  Google Scholar 

  47. H.G. Brion, H. Siethoff, W. Schröter: New stages in stress–strain curves of germanium at high-temperatures, Philos. Mag. A 43(6), 1505–1513 (1981)

    Article  ADS  Google Scholar 

  48. H. Siethoff: Cross-slip in the high-temperature deformation of germanium, silicon and indium-antimonide, Philos. Mag. A 47(5), 657–669 (1983)

    Article  ADS  Google Scholar 

  49. B. Escaig: Cross-slip processes in the fcc structure. In: Dislocation Dynamics, ed. by A.R. Rosenfield, R. Alan (McGraw-Hill, London 1968) pp. 655–677

    Google Scholar 

  50. D. Maroudas, R.A. Brown: On the prediction of dislocation formation in semiconductor crystals grown from the melt – Analysis of the Haasen model for plastic deformation dynamics, J. Cryst. Growth 108, 399–415 (1991)

    Article  ADS  Google Scholar 

  51. C.T. Tsai: On the finite-element modeling of dislocation dynamics during semiconductor-crystal growth, J. Cryst. Growth 113, 499–507 (1991)

    Article  ADS  Google Scholar 

  52. C.T. Tsai, A.N. Gulluoglu, C.S. Hertley: A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from the melt, J. Appl. Phys. 73, 1650–1656 (1993)

    Article  ADS  Google Scholar 

  53. J.C. Lambropoulos, C.H. Wu: Mechanics of shaped crystal growth from the melt, J. Mater. Res. 11, 2163–2176 (1996)

    Article  ADS  Google Scholar 

  54. N. Miyazaki, Y. Kuroda: Dislocation density simulations for bulk single crystal growth process, Met. Mater. Int. 4(4), 883–890 (1998)

    Article  Google Scholar 

  55. J.C. Moosbrugger: Continuum slip viscoplasticity with the Haasen constitutive model – application to single-crystal inelasticity, Int. J. Plast. 11, 799–826 (1995)

    Article  MATH  Google Scholar 

  56. J.C. Moosbrugger, A. Levy: Constitutive modelling for CdTe single-crystals, Metall. Mater. Trans. A 26(10), 2687–2697 (1995)

    Article  Google Scholar 

  57. H. Chung, W. Si, M. Dudley, A. Anselmo, D.F. Bliss, A. Maniatty, H. Zhang, V. Prasad: Characterization of structural defects in MLEK grown InP single crystals using synchotron beam x-ray topography, J. Cryst. Growth 174(1–4), 230–237 (1997)

    Article  ADS  Google Scholar 

  58. H. Chung, W. Si, M. Dudley, D.F. Bliss, R. Kalan, A. Maniatty, H. Zhang, V. Prasad: Characterization of defect structures in magnetic liquid encapsulated Kyropoulos grown InP single crystals, J. Cryst. Growth 181(1-2), 17–25 (1997)

    Article  ADS  Google Scholar 

  59. H. Steinhardt, P. Haasen: Creep and dislocation velocities in GaAs, Phys. Status Solidi (a) 49, 93–101 (1978)

    Article  ADS  Google Scholar 

  60. I. Yonenaga, U. Unose, K. Sumino: Mechanical properties of GaAs crystals, J. Mater. Res. 2, 252–261 (1987)

    Article  ADS  Google Scholar 

  61. A. George, C. Escaravage, G. Champier, W. Schröter: Velocities of screw and 60°-dislocations in silicon, Phys. Status Solidi (b) 53, 483–496 (1972)

    Article  ADS  Google Scholar 

  62. M. Imai, K. Sumino: Insitu x-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon-crystals, Philos. Mag. A 47(4), 599–621 (1983)

    Article  ADS  Google Scholar 

  63. B.Y. Farber, V.I. Nikitenko: Change of dislocation mobility characteristics in silicon single-crystals at elevated-temperatures, Phys. Status Solidi (a) 73(1), K141–144 (1982)

    Article  ADS  Google Scholar 

  64. I. Yonenaga, K. Sumino: Dislocation velocity in indium-phospide, Appl. Phys. Lett. 58(1), 48–50 (1991)

    Article  ADS  Google Scholar 

  65. H. Nagai: Dislocation velocities in indium phospide, Jpn. J. Appl. Phys. 20(4), 793–794 (1981)

    Article  ADS  Google Scholar 

  66. K. Maeda, S. Takeuchi: Recombination enhanced glide in InP single crystals, Appl. Phys. Lett. 42(8), 664–666 (1983)

    Article  ADS  Google Scholar 

  67. F. Louchet: On the mobility of dislocations in silicon by insitu straining in a high-voltage electron-microscope, Philos. Mag. 43(5), 1289–1297 (1981)

    Article  ADS  Google Scholar 

  68. V. Celli, M. Kabler, T. Ninoyama, R. Thomson: Theory of dislocation mobility in semiconductors, Phys. Rev. 131(1), 58–72 (1963)

    Article  ADS  Google Scholar 

  69. V.V. Rybin, A.N. Orlov: Theory of dislocation motion in low-velocity range, Sov. Phys. Solid State 11, 2635–2641 (1970)

    Google Scholar 

  70. S. Öberg, P.K. Sitch, R. Jones, M.I. Heggie: First-principles calculations of the energy barrier to dislocation motion in Si and GaAs, Phys. Rev. B 51(19), 13138–13145 (1995)

    Article  ADS  Google Scholar 

  71. V.V. Bulatov, S. Yip, A.S. Argon: Atomic modes of dislocation mobility in silicon, Philos. Mag. A 72(2), 453–496 (1995)

    Article  ADS  Google Scholar 

  72. H.R. Kolar, J.C.H. Spencer, H. Alexander: Observation of moving dislocation kinks and unpinning, Phys. Rev. Lett. 77(19), 4031–4034 (1996)

    Article  ADS  Google Scholar 

  73. H.J. Möller: The movement of dissociated dislocations in the diamond–cubic structure, Acta Metall. 26, 963–973 (1977)

    Article  Google Scholar 

  74. P. Haasen: Kink formation in charged dislocation, Phys. Status Solidi (a) 28(1), 145–155 (1975)

    Article  ADS  Google Scholar 

  75. P.B. Hirsch: Mechanism for the effect of doping on dislocation mobility, J. Phys. 40(6), 117–121 (1979)

    Google Scholar 

  76. K. Sumino, I. Yonenaga: Dislocation dynamics and mechanical behavior of elemental and compound semiconductors, Phys. Status Solidi (a) 138, 573–581 (1993)

    Article  ADS  Google Scholar 

  77. K. Sumino, H. Harada: In situ x-ray topographic studies of the generation and the multiplication processes of dislocations in silicon crystals at elevated temperature, Philos. Mag. A 44(6), 1319–1334 (1981)

    Article  ADS  Google Scholar 

  78. P. Franciosi, A. Zaoui: Multislip in fcc. crystals: A theoretical approach compared with experimental data, Acta Metall. 30, 1627–1637 (1982)

    Article  Google Scholar 

  79. A. Moulin, M. Condat, L.P. Kubin: Mesoscale modelling of the yield point properties of silicon crystals, Acta Metall. 47(10), 2879–2888 (1999)

    Google Scholar 

  80. H. Alexander, J.J. Crawford: Latent hardening of germanium crystals, Phys. Status Solidi (b) 222, 41–49 (2000)

    Article  ADS  Google Scholar 

  81. A.A. Chernov: Modern Crystallography III. Crystal Growth (Springer, Berlin 1984)

    Book  Google Scholar 

  82. H. Klapper: Generation and propagation of dislocations during crystal growth, Mater. Chem. Phys. 66, 101–109 (2000)

    Article  Google Scholar 

  83. G. Dhanaraj, B. Raghothamachar, J. Bai, H. Chung, M. Dudley: Synchrotron x-ray topographic characterization of defects in InP bulk crystals, Proc. Int. Conf. Indium Phosphide Relat. Mater. (2005) pp. 643–648

    Google Scholar 

  84. G.T. Brown, B. Cockayne, W.R. Macewan: Deformation behavior of single crystals of InP in uniaxial compression, J. Mater. Sci. 15, 1469–1477 (1980)

    Article  ADS  Google Scholar 

  85. S. Pendurti: Modeling Dislocation Generation in High Pressure Czochralski Growth of InP Single Crystals. Ph.D. Thesis (State University of New York, Stony Brook 2003)

    Google Scholar 

  86. A.S. Jordan: Some thermal and mechanical properties of InP essential to crystal growth modeling, J. Cryst. Growth 71, 559–565 (1985)

    Article  ADS  Google Scholar 

  87. H. Siethoff: The plasticity of elemental and compound semiconductors, Semicond. Semimet. 37, 143–187 (1992)

    Article  Google Scholar 

  88. J.C. Simo, T.J.R. Hughes: Computational Inelasticity (Springer, New York 1998)

    MATH  Google Scholar 

  89. H. Zhang, V. Prasad: A multizone adaptive process model for low and high pressure crystal growth, J. Cryst. Growth 155, 47–65 (1995)

    Article  ADS  Google Scholar 

  90. P. Rudolph, M. Jurisch: Bulk growth of GaAs – An overview, J. Cryst. Growth 199(1), 325–335 (1999)

    Article  ADS  Google Scholar 

  91. V.A. Antonov, V.G. Elsakov, T.I. Olkhovikova, V.V. Selin: Dislocations and 90°-twins in LEC-grown InP crystals, J. Cryst. Growth 235(1–4), 35–39 (2002)

    Article  ADS  Google Scholar 

  92. T.-C. Chen, H.-C. Wu, C.-I. Weng: The effect of interface shape on anisotropic thermal stress of bulk single crystal during Czochralski growth, J. Cryst. Growth 173, 367–379 (1997)

    Article  ADS  Google Scholar 

  93. J. Matsui: Study of strain variation in LEC-grown GaAs bulk crystals by synchotron radiation x-ray, Appl. Surf. Sci. 50, 1–8 (1991)

    Article  ADS  Google Scholar 

  94. H.M. Buchheit, A. Khoukh, M. Bejar, S.K. Krawczyk, R.C. Blanchet: Residual strain mapping in III–V materials by spectrally resolving scanning photoluminescence, Microelectron. J. 30(7), 651–657 (1999)

    Article  Google Scholar 

  95. S. Pendurti, V. Prasad, H. Zhang: Modelling dislocation generation in high pressure Czochralski growth of InP single crystals: Part I. Construction of a visco-plastic deformation model, Model. Simul. Mater. Sci. Eng. 13, 249–266 (2005)

    Article  ADS  Google Scholar 

  96. V. Prasad, H. Zhang: Transport phenomena in Czochralski crystal growth processes, Adv. Heat Transf. 30, 313–435 (1997)

    Article  Google Scholar 

  97. A.G. Elliot, A. Flat, D.A. Vanderwater: Silicon incorporation in LEC growth of single-crystal gallium-arsenide, J. Cryst. Growth 121(3), 349–359 (1992)

    Article  ADS  Google Scholar 

  98. M. Neubert, P. Rudolph: Growth of semi-insulating GaAs crystals in low temperature gradients by using the vapour pressure controlled Czochralski method (VCZ), Prog. Cryst. Growth Charact. Mater. 43(2/3), 119–185 (2001)

    Article  Google Scholar 

  99. G. Müller, J. Völkl, E. Tomzig: Thermal analysis of LEC InP growth, J. Cryst. Growth 64(1), 40–47 (1983)

    Article  ADS  Google Scholar 

  100. A.R. Von Neida, A.S. Jordan: Reducing dislocations in GaAs and InP, J. Met. 38, 35–40 (1986)

    Google Scholar 

  101. A.G. Elliot, C.L. Wei, R. Farraro, G. Woolhouse, M. Scott, R. Hiskes: Low dislocation density, large diameter, liquid encapsulated Czochralski growth of GaAs, J. Cryst. Growth 70, 169–178 (1984)

    Article  ADS  Google Scholar 

  102. K. Katagiri, S. Yamazaki, A. Takagi, O. Oda, H. Araki, I. Tsuboya: LEC growth of large diameter InP single crystals doped with Sn and with S, Inst. Phys. Conf. Ser. 79, 67–72 (1986)

    Google Scholar 

  103. R. Hirano, M. Uchida: Reduction of dislocation densities in InP single crystals by the LEC method using thermal baffles, J. Electron. Mater. 25, 347–351 (1996)

    Article  ADS  Google Scholar 

  104. R. Hirano: Growth of low etch pit density homogeneous 2′′ InP crystals using a newly developed thermal baffle, Jpn. J. Appl. Phys. 38(2B), 969–971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  105. K. Terashima, T. Fukuda: A new magnetic–field applied pulling apparatus for LEC GaAs single-crystal growth, J. Cryst. Growth 63, 423–425 (1983)

    Article  ADS  Google Scholar 

  106. H. Miyairi, T. Inada, M. Eguchi, T. Fukuda: Growth and properties of InP single crystals grown by the magnetic-field applied LEC method, J. Cryst. Growth 79(1–3), 291–295 (1986)

    Article  ADS  Google Scholar 

  107. J. Osaka, H. Kohda, T. Kobayashi, K. Hoshikawa: Homogeneity of vertical magnetic-field applied LEC GaAs crystal, Jpn. J. Appl. Phys. Part 2 – Lett. 23(4), L194–197 (1984)

    Google Scholar 

  108. S. Ozawa, T. Kimura, J. Kobayashi, T. Fukuda: Programmed magnetic-field applied liquid encapsulated Czochralski crystal-growth, Appl. Phys. Lett. 50(6), 329–331 (1987)

    Article  ADS  Google Scholar 

  109. H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka, K. Hoshikawa: Crystal-growth of completely dislocation-free and striation-free GaAs, J. Cryst. Growth 71(3), 813–816 (1985)

    Article  ADS  Google Scholar 

  110. S. Pendurti, H. Zhang, V. Prasad: Modeling dislocation generation in high pressure Czochralski growth of InP single crystals: Part II, Model. Simul. Mater. Sci. Eng. 13, 267–297 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishwanath (Vish) Prasad or Srinivas Pendurti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Prasad, V.(., Pendurti, S. (2010). Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_39

Download citation

Publish with us

Policies and ethics