Skip to main content
  • 1067 Accesses

Abstract

In suspensions of colloidal particles different types of interactions are in a subtle interplay. In this report we are interested in sub-micro meter sized Al2O3 particles which are suspended in water. Their interactions can be adjusted by tuning the pH-value and the salt concentration. In this manner different microscopic structures can be obtained. Industrial processes for the production of ceramics can be optimized by taking advantage of specific changes of the microscopic structure. To investigate the influences of the pH-value and the salt concentration on the microscopic structure and the properties of the suspension, we have developed a coupled Stochastic Rotation Dynamics (SRD) and Molecular Dynamics (MD) simulation code. The code has been parallelized using MPI. We utilize the pair correlation function and the structure factor to analyze the structure of the suspension. The results are summarized in a stability diagram. For selected conditions we study the process of cluster formation in large scale simulations of dilute suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Ackerson, C. G. DeKruif, N. J. Wagner, and W. B. Russel. Comparison of small shear flow rate-small wave vector static structure factor data with theory. J. Chem. Phys., 90(6):3250, 1989.

    Article  Google Scholar 

  2. B. J. Ackerson and P. N. Pusey. Shear-induced order in suspensions of hard spheres. Phys. Rev. Lett., 61(8):1033, 1988.

    Article  Google Scholar 

  3. S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. J. Chem. Phys., 80(11):5776–81, 1984.

    Article  Google Scholar 

  4. I. Ali, D. Marenduzzo, and J. M. Yeomans. Dynamics of polymer packaging. J. Chem. Phys., 121:8635–8641, Nov. 2004.

    Article  Google Scholar 

  5. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford Science Publications. Clarendon Press, Oxford, 1987.

    MATH  Google Scholar 

  6. J. F. Brady. The rheological behavior of concentrated colloidal suspensions. J. Chem. Phys., 99(1):567–81, 1993.

    Article  Google Scholar 

  7. J. F. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20:111–57, 1988.

    Article  Google Scholar 

  8. A. A. Catherall, J. R. Melrose, and R. C. Ball. Shear thickening and order–disorder effects in concentrated colloids at high shear rates. Journal of Rheology, 44(1):1–25, 2000.

    Article  Google Scholar 

  9. I. Cohen, T. G. Mason, and D. A. Weitz. Shear-induced configurations of confined colloidal suspensions. Phys. Rev. Lett., 93(4):046001, 2004.

    Article  Google Scholar 

  10. A. de Candia, E. del Gado, A. Fierro, N. Sator, and A. Coniglio. Colloidal gelation, percolation and structural arrest. Physica A, 358:239–248, 2005.

    Article  Google Scholar 

  11. B. V. Derjaguin and L. D. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phsicochimica USSR, 14:633, 1941.

    Google Scholar 

  12. J. Dobnikar, Y. Chen, R. Rzehak, and H. H. von Grünberg. Many-body interactions in colloidal suspensions. J. Phys.: Condens. Matter, 15:S263, 2003.

    Article  Google Scholar 

  13. J. Dobnikar, R. Rzehak, and H. H. von Grünberg. Effect of many-body interactions on the solid-liquid phase behavior of charge-stabilized colloidal suspensions. Europhys. Lett., 61(5):695–701, 2003.

    Article  Google Scholar 

  14. E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila. Influence of hydrodynamics on many-particle diffusion in 2d colloidal suspensions. Eur. Phys. J. E, 13:267–275, 2004.

    Article  Google Scholar 

  15. M. J. Grimson and M. Silbert. A self-consistent theory of the effective interactions in charge-stabilized colloidal dispersions. Macromol. Phys., 74(2):397–404, 1991.

    Google Scholar 

  16. L. Harnau and S. Dietrich. Depletion potential in colloidal mixtures of hard spheres and paltelets. Phys. Rev. E, 69:051501, 2004.

    Article  Google Scholar 

  17. M. Hecht, J. Harting, M. Bier, J. Reinshagen, and H. J. Herrmann. Shear viscosity of clay-like colloids in computer simulations and experiments. Phys. Rev. E, 74:021403, 2006.

    Article  Google Scholar 

  18. M. Hecht, J. Harting, and H. J. Herrmann. Formation and growth of clusters in colloidal suspensions. Int. J. Mod. Phys. C, 2007. in print.

    Google Scholar 

  19. M. Hecht, J. Harting, and H. J. Herrmann. A stability diagram for dense suspensions of model colloidal al2o3-particles in shear flow. arXiv:cond-mat/0606455, 2006. Accepted for publication in Phys. Rev. E.

    Google Scholar 

  20. M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann. Simulation of claylike colloids. Phys. Rev. E, 72:011408, jul 2005.

    Article  Google Scholar 

  21. M. Hütter. Brownian Dynamics Simulation of Stable and of Coagulating Colloids in Aqueous Suspension. PhD thesis, Swiss Federal Institute of Technology Zurich, 1999.

    Google Scholar 

  22. M. Hütter. Local structure evolution in particle network formation studied by brownian dynamics simulation. J. Colloid Interface Sci., 231:337–350, 2000.

    Article  Google Scholar 

  23. A.-P. Hynninen, M. Dijkstra, and R. van Roij. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions. Phys. Rev. E, 69:061407, 2004.

    Article  Google Scholar 

  24. T. Ihle and D. M. Kroll. Stochastic rotation dynamics I: Formalism, galilean invariance, green-kubo relations. Phys. Rev. E, 67(6):066705, 2003.

    Article  Google Scholar 

  25. T. Ihle and D. M. Kroll. Stochastic rotation dynamics II: Transport coefficients, numerics, long time tails. Phys. Rev. E, 67(6):066706, 2003.

    Article  Google Scholar 

  26. Y. Inoue, Y. Chen, and H. Ohashi. Development of a simulation model for solid objects suspended in a fluctuating fluid. J. Stat. Phys., 107(1):85–100, 2002.

    Article  Google Scholar 

  27. A. Komnik, J. Harting, and H. J. Herrmann. Transport phenomena and structuring in shear flow of suspensions near solid walls. Journal of Statistical Mechanics: theory and experiment, P12003, 2004.

    Google Scholar 

  28. A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 2. numerical results. J. Fluid Mech., 271:311–339, 1994.

    Article  MathSciNet  Google Scholar 

  30. A. J. C. Ladd and R. Verberg. Lattice-boltzmann simulations of particle-fluid suspensions. J. Stat. Phys., 104(5):1191, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Lattuada, H. Wu, and M. Morbidelli. Estimation of fractal dimension of colloidal gels in the presence of multiple scattering. Phys. Rev. E, 64:061404, 2001.

    Article  Google Scholar 

  32. Y. Levin, T. Trizac, and L. Bocquet. On the fluid-fluid phase separation in charged-stabilized colloidal suspensions. J. Phys.: Condens. Matter, 15:S3523, 2003.

    Article  Google Scholar 

  33. A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys., 110:8605, 1999.

    Article  Google Scholar 

  34. A. Malevanets and R. Kapral. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys., 112:7260, 2000.

    Article  Google Scholar 

  35. D. W. McCarthy, J. E. Mark, and D. W. Schaefer. Synnthesis, structure, and properdies of hybrid organic-inorganic composites based on polysiloxanes. i. poly(dimathylsiloxane) elastomers containing silica. J. Polym. Sci. B, 36(7):1167, 1998.

    Article  Google Scholar 

  36. J. R. Melrose and D. M. Heyes. Simulations of electrorheological and particle mixture suspensions: Agglomerate and layer structures. J. Chem. Phys., 98(7):5873–5886, 1993.

    Article  Google Scholar 

  37. R. Oberacker, J. Reinshagen, H. von Both, and M. J. Hoffmann. Ceramic slurries with bimodal particle size distributions: Rheology, suspension structure and behaviour during pressure filtration. In N. C. S. Hirano, G.L. Messing, editor, Ceramic Processing Science VI, volume 112, pages 179–184. American Ceramic Society, Westerville, OH (USA), 2001. ISBN 1574981048.

    Google Scholar 

  38. J. T. Padding and A. A. Louis. Hydrodynamic and brownian fluctuations in sedimenting suspensions. Phys. Rev. Lett., 93:220601, 2004.

    Article  Google Scholar 

  39. J. T. Padding and A. A. Louis. Hydrodynamic interactions and brownian forces in colloidal suspensions: Coarse-graining over time and length-scales. Phys. Rev. E, 74:031402, 2006.

    Article  Google Scholar 

  40. T. Palberg, W. Mönch, F. Bitzer, R. Piazza, and T. Bellini. Freezing transition for colloids with adjustable charge: A test of charge renormalization. Phys. Rev. Lett., 74:4555, 1995.

    Article  Google Scholar 

  41. T. N. Phung, J. F. Brady, and G. Bossis. Stokesian dynamics simulation of brownian suspensions. J. Fluid Mech., 313:181–207, 1996.

    Article  Google Scholar 

  42. M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper. Low-reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett., 68:106–12, 2004.

    Article  Google Scholar 

  43. M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper. Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Phys. Rev. E, 72:016701, 2005.

    Article  Google Scholar 

  44. M. Ripoll, R. G. Winkler, and G. Gompper. Star polymers in shear flow. Phys. Rev. Lett., 96:188302, 2006.

    Article  Google Scholar 

  45. A. Sierou and J. F. Brady. Accelerated stokesian dynamics simulations. J. Fluid Mech., 448:115, 2001.

    Article  MATH  Google Scholar 

  46. A. Sierou and J. F. Brady. Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech., 506:285, 2004.

    Google Scholar 

  47. L. E. Silbert, J. R. Melrose, and R. C. Ball. Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems. Phys. Rev. E, 56(6):7067–7077, December 1997.

    Article  Google Scholar 

  48. K. G. Soga, J. R. Melrose, and R. C. Ball. Continuum percolation and depletion flocculation. J. Chem. Phys., 108(14):6026–6032, 1998.

    Article  Google Scholar 

  49. K. G. Soga, J. R. Melrose, and R. C. Ball. Metastable states and the kinetics of colloid phase separation. J. Chem. Phys., 110(4):2280–2288, 1999.

    Article  Google Scholar 

  50. V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz. Jamming phase diagram for attractive particles. Nature, 411(3):772–774, 2001.

    Article  Google Scholar 

  51. R. van Roij and J.-P. Hansen. Van der waals-like instability in suspensions of mutually repelling charged colloids. Phys. Rev. Lett., 79(16):3082–85, 1997.

    Article  Google Scholar 

  52. E. J. W. Vervey and J. T. G. Overbeek. Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam, 1948.

    Google Scholar 

  53. R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper. Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study. J. Phys.: Condens. Matter, 16(38):S3941–54, 2004.

    Article  Google Scholar 

  54. R. Yamamoto, K. Kim, Y. Nakayama, K. Miyazaki, and D. R. Reichman. On the role of hydrodynamic interactions in colloidal gelation. arXiv:cond-mat/0604404, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hecht, M., Harting, J. (2008). Structural Transitions in Colloidal Suspensions. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering `07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74739-0_4

Download citation

Publish with us

Policies and ethics