Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4708))

Abstract

Living organisms function according to complex mechanisms that operate in different ways depending on conditions. Evolutionary theory suggests that such mechanisms evolved as result of a random search guided by selection. However, there has existed no theory that would explain quantitatively which mechanisms can so evolve in realistic population sizes within realistic time periods, and which are too complex. In this paper we suggest such a theory. Evolution is treated as a form of computational learning from examples in which the course of learning is influenced only by the fitness of the hypotheses on the examples, and not otherwise by the specific examples. We formulate a notion of evolvability that quantifies the evolvability of different classes of functions. It is shown that in any one phase of evolution where selection is for one beneficial behavior, monotone Boolean conjunctions and disjunctions are demonstrably evolvable over the uniform distribution, while Boolean parity functions are demonstrably not. The framework also allows a wider range of issues in evolution to be quantified. We suggest that the overall mechanism that underlies biological evolution is evolvable target pursuit, which consists of a series of evolutionary stages, each one pursuing an evolvable target in our technical sense, each target being rendered evolvable by the serendipitous combination of the environment and the outcome of previous evolutionary stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford Univ. Press, Oxford (1997)

    MATH  Google Scholar 

  2. Bejerano, G., et al.: Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004)

    Article  Google Scholar 

  3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester (2000)

    MATH  Google Scholar 

  5. Darwin, C.: On the origin of species by means of natural selection. John Murray, London (1859)

    Google Scholar 

  6. Dermitzakis, E.T., et al.: Conserved non-genic sequences - an unexpected feature of mammalian genomes. Nature Reviews Genetics 6, 151–157 (2005)

    Article  Google Scholar 

  7. Drake, J.W., et al.: Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998)

    Google Scholar 

  8. Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.G.: A general lower bound on the number of examples needed for learning. Inf. and Computation 82(2), 247–261 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer, P., Simon, H.U.: On learning ring-sum expressions. SIAM J. Computing 21(1), 181–192 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)

    MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  12. Helmbold, D., Sloan, R., Warmuth, M.K.: Learning integer lattices. SIAM J. Computing 21(2), 240–266 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58, 13 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kearns, M.: Efficient noise tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kearns, M., Valiant, L.G.: Cryptographic limitations on learning Boolean formulae. J. ACM 41(1), 67–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  Google Scholar 

  18. Kumar, S., Subramanian, S.: Mutation rates in mammalian genomes. Proc. Nat. Acad. Sci. 99, 803–808 (2002)

    Article  Google Scholar 

  19. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Mass (1994)

    MATH  Google Scholar 

  20. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Roff, D.A.: Evolutionary Quantitative Genetics. Chapman & Hall, New York (1997)

    Google Scholar 

  22. Ros, J.P.: Learning Boolean functions with genetic algorithms: A PAC analysis. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, pp. 257–275. Morgan Kaufmann, San Mateo, CA (1993)

    Google Scholar 

  23. Valiant, L.G.: A theory of the learnable. C. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  24. Valiant, L.G.: Robust logics. Artificial Intelligence Journal 117, 231–253 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Valiant, L.G.: Knowledge infusion. In: Proc. 21st National Conference on Artificial Intelligence, AAAI 2006, pp. 1546–1551 (2006)

    Google Scholar 

  26. Wagner, G.P., Altenberg, L.: Complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)

    Article  Google Scholar 

  27. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Wright, S.: Evolution and the Genetics of Populations, A Treatise. University of Chicago Press, Chicago (1968-78)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luděk Kučera Antonín Kučera

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valiant, L.G. (2007). Evolvability. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74456-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74455-9

  • Online ISBN: 978-3-540-74456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics