Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4644))

Abstract

In this paper, we propose a gate-level NBTI delay degradation model, where the stress voltage variability due to PMOS transistors’ stacking effect is considered for the first time. Experimental results show that our gate-level NBTI delay degradation model results in a tighten upper bound for circuit performance analysis. The traditional circuit degradation analysis leads to on average 59.3% overestimation. The pin reordering technique can mitigate on average 6.4% performance degradation in our benchmark circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borkar, S.: Designing reliable systems from unreliable components: The challenges of transistor variability and degradation. Micro, IEEE 25(6), 10–16, 0272–1732 (2005)

    Article  Google Scholar 

  2. Huard, V., Denais, M., Parthasarathy, C.: NBTI degradation: From physical mechanisms to modelling. Microelectron. Reliab. 46(1), 1–23 (2006)

    Article  Google Scholar 

  3. Kufluoglu, H., Alam, M.A.: Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs. IEEE Trans. Electron Devices 53(5), 1120–1130 (2006)

    Article  Google Scholar 

  4. Wittmann, R., Puchner, H., Hinh, L., Ceric, H., Gehring, A., Selberherr, S.: Impact of NBTI-driven parameter degradation on lifetime of a 90nm p-MOSFET. In: Proc. Intl. Integrated Reliab. Workshop Final Report, pp. 99–102 (2005)

    Google Scholar 

  5. Reddy, V., Krishnan, A.T., Marshall, A., Rodriguez, J., Natarajan, S., Rost, T., Krishnan, S.: Impact of negative bias temperature instability on digital circuit reliability. Microelectron. Reliab. 45(1), 31–38 (2005)

    Article  Google Scholar 

  6. Kumar, S., Kim, C., Sapatnekar, S.: Impact of NBTI on SRAM Read Stability and Design for Reliability. In: Proc. ISQED, pp. 210–218 (2006)

    Google Scholar 

  7. Ogawa, S., Shiono, N.: Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface. Physical Review B 51(7), 4218–4230 (1995)

    Article  Google Scholar 

  8. Alam, M., Mahapatra, S.: A comprehensive model of PMOS NBTI degradation. Microelectron. Reliab. 45(1), 71–81 (2005)

    Article  Google Scholar 

  9. Mahapatra, S., Saha, D., Varghese, D., Kumar, P.: On the generation and recovery of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress. IEEE Trans. Electron Device 53(7), 1583–1592 (2006)

    Article  Google Scholar 

  10. Chen, G., Li, M., Ang, C., Zheng, J., Kwong, D.: Dynamic NBTI of p-MOS transistors and its impact on MOSFET scaling. IEEE Electron Dev. Lett. 23(12), 734–736 (2002)

    Article  Google Scholar 

  11. Mahapatra, S., Bharath Kumar, P., Dalei, T., Sana, D., Alam, M.: Mechanism of negative bias temperature instability in CMOS devices: degradation, recovery and impact of nitrogen. In: IEDM Tech. Dig., pp. 105–108 (2004)

    Google Scholar 

  12. Paul, B., Kang, K., Kufluoglu, H., Alam, M., Roy, K.: Impact of NBTI on the temporal performance degradation of digital circuits. IEEE Electron Dev. Lett. 26(8), 560–562 (2005)

    Article  Google Scholar 

  13. Kumar, S., Kim, C., Sapatnekar, S.: An Analytical Model for Negative Bias Temperature Instability. In: Proc. IEEE/ACM ICCAD, pp. 493–496 (2006)

    Google Scholar 

  14. Vattikonda, R., Wang, W., Cao, Y.: Modeling and Minimization of PMOS NBTI Effect for Robust Nanometer Design. In: Proc. DAC, pp. 1047–1052 (2006)

    Google Scholar 

  15. Bhardwaj, S., Wang, W., Vattikonda, R., Cao, Y., Vrudhula, S.: Predictive Modeling of the NBTI Effect for Reliable Design. In: Proc. CICC, pp. 189–192 (2006)

    Google Scholar 

  16. Luo, H., Wang, Y., He, K., Luo, R., Yang, H., Xie, Y.: Modeling of PMOS NBTI Effect Considering Temperature Variation. In: Proc. ISQED, pp. 139–144 (2007)

    Google Scholar 

  17. Nanoscale Integration and Modeling Group, ASU: Predictive Technology Model (PTM)

    Google Scholar 

  18. Paul, B., Kang, K., Kufluoglu, H., Alam, M., Roy, K.: Temporal Performance Degradation under NBTI: Estimation and Design for Improved Reliability of Nanoscale Circuits. In: Proc. DATE, vol. 1, pp. 1–6 (2006)

    Google Scholar 

  19. Stathis, J., Zafar, S.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46(2-4), 270–286 (2006)

    Article  Google Scholar 

  20. Sultania, A., Sylvester, D., Sapatnekar, S.: Transistor and pin reordering for gate oxide leakage reduction in dual Tox circuits. In: Proc. ICCD, pp. 228–233 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nadine Azémard Lars Svensson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, H., Wang, Y., He, K., Luo, R., Yang, H., Xie, Y. (2007). A Novel Gate-Level NBTI Delay Degradation Model with Stacking Effect. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74442-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74441-2

  • Online ISBN: 978-3-540-74442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics