Skip to main content

Outgassing

  • Chapter
Vacuum Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Mechanism

  1. B. B. Dayton, “Relations between size of vacuum chamber, outgassing rate, and required pumping speed”, 1959 6th National Symposium on Vacuum Technology Transactions (Pergamon Press, 1960), pp. 101–119.

    Google Scholar 

  2. B. B. Dayton, “Outgassing rate of contaminated metal surfaces”, Transactions of the 8th National Vacuum Symposium, 1961 (Pergamon Press, 1962), pp. 42–57.

    Google Scholar 

  3. K. W. Rogers, “The variation in outgassing rate with the time of exposure and pumping”, Transactions of the 10th National Vacuum Symposium, 1963 (Macmillan, New York, 1964) pp. 84–87.

    Google Scholar 

  4. B. B. Dayton, “The effect of bake-out on the degassing of metals”, Transactions of the 9th National Vacuum Symposium, 1962 (Macmillan, New York, 1963), pp. 293–300.

    Google Scholar 

  5. N. Yoshimura, H. Hirano, K. Ohara, and I. Ando, “Outgassing characteristics of an electropolished stainless-steel pipe with an operating extractor ionization gauge”, J. Vac. Sci. Technol. A 9 (4), pp. 2315–2318 (1991).

    Article  ADS  Google Scholar 

  6. P. A. Redhead, “Effects of readsorption on outgassing rate measurements”, J. Vac. Sci. Technol. A 14(4), pp. 2599–2609 (1996). Erratum: Effects of readsorption on outgassing rate measurements [J. Vac. Sci. Technol. A 14, p. 2599 (1996)], J. Vac. Sci. Technol. A 15(4), p. 2455 (1997).

    Google Scholar 

  7. A. Schram, “La désorption sous vide”, Le Vide 103, pp. 55–68 (1963) (in French).

    Google Scholar 

  8. R. Calder and G. Lewin, “Reduction of stainless-steel outgassing in ultra-high vacuum”, Brit. J. Appl. Phys. 18, pp. 1459–1472 (1967).

    Article  ADS  Google Scholar 

  9. D. J. Santeler, “Estimating the gas partial pressure due to diffusive outgassing”, J. Vac. Sci. Technol. A 10(4), pp. 1879–1883 (1992).

    Article  ADS  Google Scholar 

  10. M. Li and H. F. Dylla, “Model for the outgassing of water from metal surfaces”, J. Vac. Sci. Technol. A 11(4), pp. 1702–1707 (1993).

    Article  ADS  Google Scholar 

  11. B. C. Moore, “Recombination limited outgassing of stainless steel”, J. Vac. Sci. Technol. A 13(3), pp. 545–548 (1995).

    Article  ADS  Google Scholar 

  12. K. Akaishi, M. Nagasuga, and Y. Funato, “True and measured outgassing rates of a vacuum chamber with a reversibly adsorbed phase”, J. Vac. Sci. Technol. A 19(1), pp. 365–371 (2001).

    Article  ADS  Google Scholar 

Data

  1. R. O. Adams, “A review of the stainless steel surface”, J. Vac. Sci. Technol. A 1 (1), pp. 12–18 (1983).

    Article  ADS  Google Scholar 

  2. T. Fujita, “Stainless steel as a vacuum industrial material”, Shinku (J. Vac. Soc. Japan) 19 (9), pp. 293–303 (1976).

    Google Scholar 

  3. Y. Ishimori, N. Yoshimura, S. Hasegawa, and H. Oikawa, “Outgassing rates of stainless steel and mild steel after different pretreatments”, Shinku (J. Vac. Soc. Japan) 14(8), pp. 295–301 (1971) (in Japanese).

    Google Scholar 

  4. J. R. Young, “Outgassing characteristics of stainless steel and aluminum with different surface treatments”, J. Vac. Sci. Technol. 6 (3), pp. 398–400 (1969).

    Article  ADS  Google Scholar 

  5. R. Nuvolone, “Technology of low-pressure systems–establishment of optimum conditions to obtain low degassing rates on 316L stainless steel by heat treatments”, J. Vac. Sci. Technol. 14 (5), pp. 1210–1212 (1977).

    Article  ADS  Google Scholar 

  6. N. Yoshimura, T. Sato, S. Adachi, and T. Kanazawa, “Outgassing characteristics and microstructure of an electropolished stainless steel surface”, J. Vac. Sci. Technol. A 8 (2), pp. 924–929 (1990).

    Article  ADS  Google Scholar 

  7. A. Tohyama, T. Yamada, Y. Hirohata, and T. Yamashina, “Outgassing characteristics of electropolished stainless steel”, J. Japan Inst. Metals, 54 (3), pp. 247–254 (1990) (in Japanese).

    Google Scholar 

  8. N. Yoshimura, H. Hirano, T. Sato, I. Ando, and S. Adachi, “Outgassing characteristics and microstructure of a “vacuum fired” (1050 ˆC) stainless steel surface”, J. Vac. Sci. Technol. A 9 (4), pp. 2326–2330 (1991).

    Article  ADS  Google Scholar 

  9. K. Tsukui, R. Hasunuma, K. Endo, T. Osaka, and I. Ohdomari, “Treatment of the wall materials of extremely high vacuum chamber for dynamical surface analysis”, J. Vac. Sci. Technol. A 11 (2), pp. 417–421 (1993).

    Article  ADS  Google Scholar 

  10. B. C. Moore, “Atmospheric permeation of austenitic stainless steel”, J. Vac. Sci. Technol. A 16 (5), pp. 3114–3118 (1998).

    Article  ADS  Google Scholar 

  11. B. C. Moore, “Thin-walled vacuum chambers of austenitic stainless steel”, J. Vac. Sci. Technol. A 19 (1) pp. 228–231 (2001).

    Article  ADS  Google Scholar 

  12. V. Nemanič, and J. Šetina, “Outgassing in thin wall stainless steel cells”, J. Vac. Sci. Technol. A 17 (3), pp. 1040–1046 (1999).

    Article  ADS  Google Scholar 

  13. H. L. Eschbach, F. Gross, and S. Schulien, “Permeability measurements with gaseous hydrogen for various steels”, Vacuum 13, pp. 543–547 (1963).

    Article  Google Scholar 

  14. V. Nemanič and J. Šetina, “Experiments with a thin walled stainless-steel vacuum chamber”, J. Vac. Sci. Technol. A 18 (4), pp. 1789–1793 (2000).

    Article  ADS  Google Scholar 

  15. M. Bernardini, S. Braccini, R. De Salvo, A. Di Virgilio, A. Gaddi, A. Gennai, G. Genuini, A. Giazotto, G. Losurdo, H. B. Pan, A. Pasqualetti, D. Passuello, P. Popolizio, F. Raffaelli, G. Torelli, Z. Zhang, C. Bradaschia, R. Del Fabbro, I. Ferrante, F. Fidecaro, P. La Penna, S. Mancini, R. Poggiani, P. Narducci, A. Solina, and R. Valentini, “Air bake-out to reduce hydrogen outgassing from stainless steel”, J. Vac. Sci. Technol. A 16 (1), pp. 188–193 (1998).

    Article  ADS  Google Scholar 

  16. Y. Ishikawa and V. Nemanič, “An overview of methods to suppress outgassing rate from austenitic stainless steel with reference to UHV and EXV”, Vacuum 69, pp. 501–512 (2003).

    Article  Google Scholar 

  17. B. Zajec and V. Nemanič, “Hydrogen pumping by austenitic stainless steel”, J. Vac. Sci. Technol. A 23 (2) pp. 322–329 (2005).

    Article  ADS  Google Scholar 

  18. S. Tsukahara, “Hydrogen and metals for ultrahigh vacuum construction materials”, Appl.Phys. (The Japan Society of Applied Physics) 69 (1), pp. 22–28 (2000) (in Japanese).

    Google Scholar 

  19. N. Yoshimura, “Ultrahigh vacuum technology in electron microscopes: Chapter 3 Outgassing of constituent materials”, Shinku (J. Vac. Soc. Japan) 46 (6), pp. 529–535 (2003) (in Japanese).

    Google Scholar 

  20. H. Sato, H. Nakamura, S. Tsukahara, Y. Ishikawa, S. Misawa, Y. Takahashi, and S. Inayoshi, “Anodized film for vacuum equipment”, Shinku (J. Vac. Soc. Japan) 45 (5), pp. 438–442 (2002) (in Japanese).

    Google Scholar 

  21. L. de Csernatony, “The properties of Viton ‘A’ elastomers I. Determination of the sorption and air solubility characteristics of Viton ‘A’ and their effect in vacuum applications of the material”, Vacuum 16 (1), pp. 13–15 (1966).

    Article  Google Scholar 

  22. L. de Csernatony, “The properties of Viton ‘A’ elastomers II. The influence of permeation, diffusion and solubility of gases on the gas emission rate from an O-ring used as an atmospheric seal or high vacuum immersed”, Vacuum 16 (3), pp. 129–134 (1966).

    Article  Google Scholar 

  23. L. de Csernatony, “The properties of Viton ‘A’ elastomers III. Steady state and transient activated gas emission processes from Viton ‘A”’, Vacuum 16 (5), pp. 247–251 (1966).

    Article  Google Scholar 

  24. L. de Csernatony, “The properties of Viton ‘A’ elastomers IV. The influence of solid-gas interaction at Viton ‘A’ and stainless steel surfaces on gas evolution rates in high vacuum”, Vacuum 16 (8), pp. 427–431 (1966).

    Article  Google Scholar 

  25. L. de Csernatony and D. J. Crawley, “The properties of Viton ‘A’ elastomers. Part V. The practical application of Viton ‘A’ seals in high vacuum”, Vacuum 17 (10), pp. 551–554 (1967).

    Article  Google Scholar 

  26. N. Yoshimura, “Water vapor permeation through Viton O ring seals”, J. Vac. Sci. Technol. A 7 (1), pp. 110–112 (1989).

    Article  ADS  Google Scholar 

  27. L. de Chernatony, “Recent advances in elastomer technology for UHV applications”, Vacuum 27 (10/11), pp. 605–609 (1977).

    Article  Google Scholar 

  28. R. N. Peacock, “Practical selection of elastomer materials for vacuum seals”, J. Vac. Sci. Technol. 17 (1), pp. 330–336 (1980).

    Article  ADS  Google Scholar 

  29. N. Yoshimura, “A differential pressure-rise method for measuring the net outgassing rates of a solid material and for estimating its characteristic values as a gas source”, J. Vac. Sci. Technol. A 3 (6), pp. 2177–2183 (1985).

    Article  ADS  Google Scholar 

Evaporation

  1. R. E. Honig, “Vapor pressure data for the more common elements”, RCA Review, June, pp. 195–204 (1957).

    Google Scholar 

Measurement Methods

  1. A. Berman, I. Hausman, and A. Roth, “Corrections in outgassing rate measurements by the variable conductance method”, Vacuum 21 (9), pp. 373–377 (1971).

    Article  Google Scholar 

  2. K. Terada, T. Okano, and Y. Tuzi, “Conductance modulation method for the measurement of the pumping speed and outgassing rate of pumps in ultrahigh vacuum”, J. Vac. Sci. Technol. A 7 (3), pp. 2397–2402 (1989).

    Article  ADS  Google Scholar 

  3. N. Yoshimura and H. Hirano, “Two-point pressure method for measuring the outgassing rate”, J. Vac. Sci. Technol. A 7 (6), pp. 3351–3355 (1989).

    Article  ADS  Google Scholar 

  4. H. Hirano and N. Yoshimura, “A three-point-pressure method for measuring the gas-flow rate through a conducting pipe”, J. Vac. Sci. Technol. A 4 (6), pp. 2526–2530 (1986).

    Article  ADS  Google Scholar 

  5. N. Yoshimura, “Discussion on methods for measuring the outgassing rate”, Shinku (J. Vac. Soc. Japan) 33(5), pp. 475–481 (1990) (in Japanese).

    Google Scholar 

Other Articles

  1. I. Ando and N. Yoshimura, “Estimation of hydrogen outgassing rate of stainless steel”, Shinku (J. Vac. Soc. Japan) 33 (3), pp. 185–187 (1990) (in Japanese).

    Google Scholar 

  2. G. Horikoshi, “Physical understanding of gas desorption mechanisms”, J. Vac. Sci. Technol. A 5(4), pp. 2501–2506 (1987).

    Article  ADS  Google Scholar 

  3. B. B. Dayton, “Outgassing rate of preconditioned vacuum systems after short exposure to the atmosphere: Outgassing rate measurements on Viton-A and copper”, J. Vac. Sci. Technol. A 13(2), pp. 451–461 (1995).

    Article  ADS  Google Scholar 

  4. K. Akaishi, Y. Kubota, O. Motojima, M. Nakasuga, Y. Funato, and M. Mushiaki, “Experimental study on the scaling law of the outgassing rate with a pumping parameter”, J. Vac. Sci. Technol. A 15(2), pp. 258–264 (1997).

    Article  ADS  Google Scholar 

  5. K. Akaishi “Solution of the outgassing equation for the pump down of an unbaked vacuum system”, J. Vac. Sci. Technol. A 17(1), pp. 229–234 (1999).

    Article  ADS  Google Scholar 

  6. R. J. Elsey, “Outgassing of vacuum materials-I”, Vacuum 25 (7), pp. 299–306 (1975).

    Article  Google Scholar 

  7. R. J. Elsey, “Outgassing of vacuum materials-II”, Vacuum 25 (8), pp. 347–361 (1975).

    Article  Google Scholar 

  8. M. D. Malev, “Gas absorption and outgassing of metals”, Vacuum 23 (2), pp. 43–50 (1973).

    Article  Google Scholar 

  9. N. Yoshimura, I. Ando, T. Sato, and S. Adachi, “Microstructure and elemental features of vacuum-fired (1050 ^ˆC) stainless steel surface”, Shinku (J. Vac. Soc. Japan) 33 (5), pp. 525–529 (1990) (in Japanese).

    Google Scholar 

Measurement Method

  1. N. Yoshimura, T. Sato, S. Adachi, and T. Kanazawa, “Microstructure and elemental features of various stainless steel surfaces”, Shinku (J. Vac. Soc. Japan) 33 (3), pp. 182–184 (1990) (in Japanese).

    Google Scholar 

  2. N. Yoshimura, H. Oikawa, and O. Mikami, “Measurement of outgassing rates from materials by differential pressure rise method”, Shinku (J. Vac. Soc. Japan) 13 (1), pp. 23–28 (1970) (in Japanese).

    Google Scholar 

  3. H. Hirano and N. Yoshimura, “A three-point-pressure method for measuring the gas-flow rate through a conducting pipe”, Shinku (J. Vac. Soc. Japan) 30 (6), pp. 531–537 (1987) (in Japanese).

    Google Scholar 

  4. M. Minato and Y. Itoh, “Measurement of outgassing rate by conductance modulation method”, Shinku (J. Vac. Soc. Japan) 36 (3), pp. 175–177 (1993) (in Japanese).

    Google Scholar 

  5. K. Saito, Y. Sato, S. Inayoshi, Y. Yang, and S. Tsukahara, “Outgassing measurement by switching between two pumping paths”, Shinku (J. Vac. Soc. Japan) 38 (4), pp. 449–454 (1995) (in Japanese).

    Google Scholar 

  6. S. Komiya, Y. Sugiyama, M. Kobayashi, and Y. Tuzi, “Direct-molecular-beam-method for mass selective outgassing rate measurement”, J. Vac. Sci. Technol. 16 (2), pp. 689–691 (1979).

    Article  ADS  Google Scholar 

  7. K. Saito, “Outgassing from vacuum materials”, Shinku (J. Vac. Soc. Japan) 40 (11), pp. 835–840 (1997) (in Japanese).

    Google Scholar 

  8. P. A. Redhead, “Recommended practices for measuring and reporting outgassing data”, J. Vac. Sci. Technol. A 20(5), pp. 1667–1675 (2002).

    Article  ADS  Google Scholar 

Data

  1. R. R. Addiss, Jr., L. Pensak, and N. J. Scott, “Evaluation of a new fluoroelastomer as a gasketing material for high vacuum systems”, 1960 7th National Symposium on Vacuun Technology Transactions (Pergamon Press, 1961), pp. 39–44.

    Google Scholar 

  2. F. J. Schittko, “Measurement of gas emission from solid surfaces”, Vacuum 13, pp. 525–537 (1963).

    Article  Google Scholar 

  3. W. Beckmann, “Gas desorption of some rubber-type materials”, Vacuum 13, pp. 349–357 (1963).

    Article  Google Scholar 

  4. B. H. Colwell, “Outgassing rates of refractory and electrical insulating materials used in high vacuum furnaces”, Vacuum 20 (11), pp. 481–490 (1970).

    Article  Google Scholar 

  5. W. G. Perkins, “Permeation and outgassing of vacuum materials”, J. Vac. Sci. Technol. 10(4), pp. 543–556 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  6. G. F. Weston, “Materials for ultrahigh vacuum”, Vacuum 25 (11/12), pp. 469–484 (1975).

    Article  Google Scholar 

  7. E. D. Erikson, T. G. Beat, D. D. Berger, and B. A. Frazier, “Vacuum outgassing of various materials”, J. Vac. Sci. Technol. A 2(2), pp. 206–210 (1984).

    Article  ADS  Google Scholar 

  8. S. S. Rosenblum, “Vacuum outgassing rates of plastics and composites for electrical insulators”, J. Vac. Sci. Technol. A 4(1), pp. 107–110 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Kubo, Y. Satoh, and Y. Saito, “Outgassing rate measurement of the electrical cables and the elastomer/plastomer materials”, Shinku (J. Vac. Soc. Japan) 41 (3), pp. 217–221 (1989) (in Japanese)

    Google Scholar 

  10. Y. Ishikawa, Y. Koguchi, and K. Odaka, “Outgassing rate of some austenitic stainless steels”, J. Vac. Sci. Technol. A 9 (2), pp. 250–253 (1991).

    Article  ADS  Google Scholar 

  11. J.-P. Bacher, C. Benvenuti, P. Chiggiato, M.-P. Reinert, S. Sgobba, and A.-M. Brass, “Thermal desorption study of selected austenitic stainless steels”, J. Vac. Sci. Technol. A 21 (1), pp. 167–174 (2003).

    Article  ADS  Google Scholar 

  12. H. C. Hseuh and Xiuhua Cui, “Outgassing and desorption of the stainless-steel beam tubes after different degassing treatments”, J. Vac. Sci. Technol. A 7 (3), pp. 2418–2422 (1989).

    Article  ADS  Google Scholar 

  13. S. Kato, M. Aono, K. Sato, and Y. Baba, “Achievement of extreme high vacuum in the order of 10-10 Pa without baking of test chamber”, J. Vac. Sci. Technol. A 8 (3), pp. 2860–2864 (1990).

    Article  ADS  Google Scholar 

  14. S. Watanabe, S. Kurokouchi, and M. Aono, “Pumping properties using an electrolytic polished stainless steel vacuum chamber”, J. Vac. Sci. Technol. A 16 (5), pp. 3084–3087 (1998).

    Article  ADS  Google Scholar 

  15. K. Odaka, Y. Ishikawa, and M. Furuse, “Effect of baking temperature and air exposure on the outgassing rate of type 316L stainless steel”, J. Vac. Sci. Technol. A 5 (5), pp. 2902–2906 (1987).

    Article  ADS  Google Scholar 

  16. K. Odaka and S. Ueda, “Outgassing reduction of type 304 stainless steel by surface oxidation in air”, J. Vac. Sci. Technol. A 13 (3), pp. 520–523 (1995).

    Article  ADS  Google Scholar 

  17. Y. Ishikawa and T. Yoshimura, “Importance of the surface oxide layer in the reduction of outgassing from stainless steels”, J. Vac. Sci. Technol. A 13 (4), pp. 1847–1852 (1995).

    Article  ADS  Google Scholar 

  18. K. Sugiyama, T. Ohmi, M. Morita, Y. Nakahara, and N. Miki, “Low outgassing and anticorrosive metal surface treatment for ultrahigh vacuum equipment”, J. Vac. Sci. Technol. A 8 (4), pp. 3337–3340 (1996).

    Article  ADS  Google Scholar 

  19. T. Ohmi, Y. Nakagawa, M. Nakamura, A. Ohki, and T. Koyama, “Formation of chromium oxide on 316L austenitic stainless steel”, J. Vac. Sci. Technol. A 14 (4), pp. 2505–2510 (1996).

    Article  ADS  Google Scholar 

  20. I. Chun, B. Cho, and S. Chung, “Outgassing rate characteristic of a stainless-steel extreme high vacuum system”, J. Vac. Sci. Technol. A 14 (4), pp. 2636–2640 (1996).

    Article  ADS  Google Scholar 

  21. I. Chun, B. Cho, and S. Chung, “Effect of the Cr-rich oxide surface on fast pumpdown to ultrahigh vacuum”, J. Vac. Sci. Technol. A 15 (5), pp. 2518–2520 (1997).

    Article  ADS  Google Scholar 

  22. S. Watanabe, S. Kurokouchi, S. Kato, and M. Aono, “Achievement of extremely high vacuum in an electrolytically polished stainless steel vacuum chamber”, J. Vac. Sci. Technol. A 16 (4), pp. 2711–2717 (1998).

    Article  ADS  Google Scholar 

  23. D. Fujita, “Surface oxide film on stainless steel and its effects on ultrahigh vacuum”, Shinku (J. Vac. Soc. Japan) 45 (5), pp. 402–408 (2002) (in Japanese).

    Google Scholar 

  24. H. F. Dylla, D. M. Manos, and P. H. LaMarche, “Correlation of outgassing of stainless steel and aluminum with various surface treatments”, J. Vac. Sci. Technol. A 11 (5), pp. 2623–2636 (1993).

    Article  ADS  Google Scholar 

  25. K. Yoshihara, M. Tosa, and K. Nii, “Surface precipitation of boron nitride on the surface of type 304 stainless steels doped with nitrogen, boron, and cerium”, J. Vac. Sci. Technol. A 3 (4), pp. 1804–1808 (1985).

    Article  ADS  Google Scholar 

  26. A. Itakura, M. Tosa, S. Ikeda, and K. Yoshihara, “Hydrogen permeation properties and surface structure of BN-coated stainless steel membrane”, Vacuum 47 (6–8), pp. 697–700 (1996).

    Article  Google Scholar 

  27. D. Fujita and T. Homma, “Characterization and thermal desorption spectroscopy study on a new, low outgassing material surface for improved ultrahigh vacuum uses”, J. Vac. Sci. Technol. A 6 (2), pp. 230–234 (1988).

    Article  ADS  Google Scholar 

  28. K. Saito, S. Inayoshi, Y. Ikeda, Y. Yang, and S. Tsukahara, “TiN thin film on stainless steel for extremely high vacuum material”, J. Vac. Sci. Technol. A 13 (3), pp. 556–561 (1995).

    Article  ADS  Google Scholar 

  29. M. Sato, M. Nishiura, M. Oishi, M. Minato, Y. Sakuma, Y. Ikeda, K. Saito, S. Misawa, and S. Tukahara, “A new system of TiN coating on interior surface of cylindrical vacuum chamber by hollow cathode discharge method”, Vacuum 47 (6–8), pp. 753–756 (1996).

    Article  Google Scholar 

  30. Y. Saito, Y. Ogawa, G. Horikoshi, N. Matuda, R. Takahashi, and M. Fukushima, “Vacuum system of the 300 m gravitational wave laser interferometer in Japan (TAMA300)”, Vacuum 53, pp. 353–356 (1999).

    Article  Google Scholar 

  31. S. Seal, R. Nardelli, A. Kale, V. Desai, and E. Armacanqui, “Role of surface chemistry on the nature of passive oxide film growth on Fe–Cr (low and high) steels at high temperatures”, J. Vac. Sci. Technol. A 17 (4), pp. 1109–1115 (1999).

    Article  ADS  Google Scholar 

Aluminum Alloy

  1. H. Ishimaru, “All-aluminum-alloy ultrahigh vacuum system for a large-scale electron-positron collider”, J. Vac. Sci. Technol. A 2 (2), pp. 1170–1175 (1984).

    Article  ADS  Google Scholar 

  2. J. R. Chen, K. Narushima, and H. Ishimaru, “Thermal outgassing from aluminum alloy vacuum chambers”, J. Vac. Sci. Technol. A 3 (6), pp. 2188–2191 (1985).

    Article  ADS  Google Scholar 

  3. M. Suemitsu, T. Kaneko, and N. Miyamoto, “Aluminum alloy ultrahigh vacuum chamber for molecular beam epitaxy”, J. Vac. Sci. Technol. A 5 (1), pp. 37–43 (1987).

    Article  ADS  Google Scholar 

  4. M. Suemitsu, H. Shimoyamada, N. Miyamoto, T. Tokai, Y. Moriya, H. Ikeda, and H. Yokoyama, “Ultrahigh-vacuum compatible mirror-polished aluminum-alloy surface: Observation of surface-roughness-correlated outgassing rates”, J. Vac. Sci. Technol. A 10(3), pp. 570–572 (1992).

    Article  ADS  Google Scholar 

  5. T. Momose, H. Yoshida, Z. Sherverni, T. Ebina, K. Tatenuma, and Y. Ikushima, “Surface cleaning on aluminum for ultrahigh vacuum using supercritical fluid CO2 with H2O and NaCl as additives”, J. Vac. Sci. Technol. A 17 (4), pp. 1391–1393 (1999).

    Article  ADS  Google Scholar 

  6. K. Tatenuma, T. Momose, and H. Ishimaru, “Quick acquisition of clean ultrahigh vacuum by chemical process technology”, J. Vac. Sci. Technol. A 11 (4), pp. 1719–1724 (1993).

    Article  ADS  Google Scholar 

  7. N. Schindler, T. Riemann, and Chr. Edelmann, “Some investigations on the effective short time outgassing depth of metals”, J. Vac. Sci. Technol. A 16 (6), pp. 3569–3577 (1998).

    Article  ADS  Google Scholar 

  8. M. Suemitsu, “Ultrathin oxide of aluminum—formation of ultrahigh-vacuum-compatible surfaces by alcoholic-lathing method—”, Shinku (J. Vac. Soc. Japan) 45 (5), pp. 415–421 (2002) (in Japanese).

    Google Scholar 

Copper and Copper Alloy

  1. C. L. Foerster, H. Halama, G. Korn, M. Calderon, and W. Barletta, “Desorption measurements of copper and copper alloys for PEP-II”, Vacuum 44 (5–7), pp. 489–491 (1993).

    Article  Google Scholar 

  2. Y. Hori, M. Kobayashi, and Y. Takiyama, “Vacuum characteristics of an oxygen-free high-conductivity copper duct at the KEK Photon Factory ring”, J. Vac. Sci. Technol. A 12 (4), pp. 1644–1647 (1994).

    Article  ADS  Google Scholar 

  3. R. A. Rosenberg, M. W. McDowell, and J. R. Noonan, “X-ray photoelectron spectroscopy analysis of aluminum and copper cleaning procedures for the Advanced Photon Source”, J. Vac. Sci. Technol. A 12 (4), pp. 1755–1759 (1994).

    Article  ADS  Google Scholar 

  4. F. Watanabe, M. Suemitsu, and N. Miyamoto, “In situ deoxidization/oxidization of a copper surface: A new concept for attaining ultralow outgassing rates from a vacuum wall”, J. Vac. Sci. Technol. A 13 (1), pp. 147–150 (1995).

    Article  ADS  Google Scholar 

  5. F. Watanabe, Y. Koyatsu, and H. Miki, “Attaining an ultralow outgassing rate of 10-12 P˙am3˙s-1˙m-2 from an oxide-free high conductivity copper chamber with beryllium-copper-alloy flanges”, J. Vac. Sci. Technol. A 13 (5), pp. 2587–2591 (1995).

    Article  ADS  Google Scholar 

  6. F. Watanabe, “Mechanism of ultralow outgassing rates in pure copper and chromium-copper alloy vacuum chambers: Reexamination by the pressure-rise method”, J. Vac. Sci. Technol. A 19 (2), pp. 640–645 (2001).

    Article  ADS  Google Scholar 

Titanium

  1. M. Minato and Y. Itoh, “Vacuum characteristics of titanium”, J. Vac. Sci. Technol. A 13 (3), pp. 540–544 (1995).

    Article  ADS  Google Scholar 

  2. Y. Itoh and M. Minato, “ Effect of different surface treatments on the outgassing characteristics of titanium”, Shinku (J. Vac. Soc. Japan) 40 (3), pp. 248–250 (1997) (in Japanese).

    Google Scholar 

  3. T. Homma, S. Akiya, T. Suzuki, and M. Minato, “Polishing of titanium surface II— A modified structure of the surface by polishing and H2, H2O-desorption”, Shinku (J. Vac. Soc. Japan) 40 (6), pp. 513–517 (1997) (in Japanese).

    Google Scholar 

  4. T. Homma, “A new vacuum function of metal surfaces with extreme thin oxide films”, Shinku (J. Vac. Soc. Japan) 45 (5), pp. 391–394 (2002) (in Japanese).

    MathSciNet  Google Scholar 

  5. Y. Takahashi, K. Higuchi, M. Kaneko, K. Sugisaki, and Y. Saito, “Mechanical properties and outgassing rate measurement of titanium hydro-formed bellows”, Shinku (J. Vac. Soc. Japan) 45 (6), pp. 533–536 (2002) (in Japanese).

    Google Scholar 

  6. T. Nishiba, Y. Harada, M. Kawahara, M. Nose, and Y. Saito, “Mechanical and vacuum properties of hydroformed titanium bellows”, Shinku (J. Vac. Soc. Japan) 45 (7), pp. 590–594 (2002) (in Japanese).

    Google Scholar 

  7. Y. Morimoto, A. Takemura, Y. Muroo, M. Uota, Y. Sato, and Y. Saito, “Outgassing characteristics of titanium with surface treatment of oxidation”, Shinku (J. Vac. Soc. Japan) 45 (8), pp. 665–669 (2002) (in Japanese).

    Google Scholar 

Adsorption/Desorption

  1. P. A. Redhead, “Modeling the pump-down of a reversible absorbed phase. I. Monolayer and submonolayer initial coverage”, J. Vac. Sci. Technol. A 13 (2), pp. 467–475 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Outgassing. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_4

Download citation

Publish with us

Policies and ethics