Skip to main content

Euclidean Shortest Paths in Simple Cube Curves at a Glance

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

This paper reports about the development of two provably correct approximate algorithms which calculate the Euclidean shortest path (ESP) within a given cube-curve with arbitrary accuracy, defined by ε> 0, and in time complexity \(\kappa(\varepsilon) \cdot {\cal O}(n)\), where κ(ε) is the length difference between the path used for initialization and the minimum-length path, divided by ε. A run-time diagram also illustrates this linear-time behavior of the implemented ESP algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton Conf. Commun. Control Comput., pp. 510–517 (1985)

    Google Scholar 

  2. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Computational Geometry 3, 177–191 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  4. Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm. IEEE Trans. Pattern Analysis Machine Intelligence 24, 962–970 (2002)

    Article  Google Scholar 

  5. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In: Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

    Google Scholar 

  6. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Computational Geometry 6, 485–524 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In Proc. ACM Conf. Computational Geometry, pp. 41–48. ACM Press, New York, NY, USA (1994)

    Google Scholar 

  8. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Pub. Co., Boston (1997)

    Google Scholar 

  9. Klette, R., Kovalevsky, V.V., Yip, B.: Length estimation of digital curves. In: Proc. Vision Geometry, SPIE 3811, pp. 117–129 (1999)

    Google Scholar 

  10. Klette, R., Bülow, T.: Critical edges in simple cube-curves. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 467–478. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  12. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. In: Platinum Jubilee Conference of The Indian Statistical Institute. IEEE Conference, Kolkata, Report 2141 on www.ima.umn.edu/preprints/oct2006

  13. Li., F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems. In: Proc. Computing: Theory Applications, plenary talk, pp. 9–19 (2007)

    Google Scholar 

  14. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG, pp. 124–133 (2004)

    Google Scholar 

  15. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inform. Process. Lett. 20, 259–263 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Talbot, M.: A dynamical programming solution for shortest path itineraries in robotics. Electr. J. Undergrad. Math. 9, 21–35 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Klette, R. (2007). Euclidean Shortest Paths in Simple Cube Curves at a Glance. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics