Skip to main content

Smooth Approximation and Rendering of Large Scattered Data Sets

  • Chapter
From Nano to Space
  • 1168 Accesses

Abstract

We present an efficient method to automatically compute a smooth approximation of large functional scattered data sets given over arbitrarily shaped planar domains. Our approach is based on the construction of a C 1-continuous bivariate cubic spline and our method offers optimal approximation order. Both local variation and non-uniform distribution of the data are taken into account by using local polynomial least squares approximations of varying degree. Since we only need to solve small linear systems and no triangulation of the scattered data points is required, the overall complexity of the algorithm is linear in the total number of points. Numerical examples dealing with several real world scattered data sets with up to millions of points demonstrate the efficiency of our method. The resulting spline surface is of high visual quality and can be efficiently evaluated for rendering and modeling. In our implementation we achieve real-time frame rates for typical fly-through sequences and interactive frame rates for recomputing and rendering a locally modified spline surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Arge, M. Dæhlen, and A. Tveito. Approximation of Scattered Data Using Smooth Grid Functions. J. Computational and Applied Math., 59:191–205, 1995.

    Article  MATH  Google Scholar 

  2. M. D. Buhmann. Radial Basis Functions. Acta Numerica, pp. 1–38, 2000.

    Google Scholar 

  3. C. K. Chui. Multivariate Splines. SIAM, 1988.

    Google Scholar 

  4. P. Cignoni, C. Montani, and R. Scopigno. A Comparison of Mesh Simplification Algorithms. Computers & Graphics, 22(1):37–54, 1998.

    Article  Google Scholar 

  5. P. Cignoni, E. Puppo, and R. Scopigno. Representation and Visualization of Terrain Surfaces at Variable Resolution. The Visual Computer, 13(5):199–217, 1997.

    Article  Google Scholar 

  6. D. Cohen and A. Shaked. Photo-Realistic Imaging of Digital Terrains. In Computer Graphics Forum (Proc. Eurographics’ 93), volume 12, pp. C363–C373, 1993.

    Article  Google Scholar 

  7. D. Cohen-Or and A. Shaked. Visibility and Dead-Zones in Digital Terrain Maps. In Computer Graphics Forum (Proc. Eurographics’ 95), volume 14, pp. C171–C180, 1995.

    Google Scholar 

  8. S. Coquillart and M. Gangnet. Shaded Display of Digital Maps. IEEE Computer Graphics and Applications, 4(7):35–42, July 1984.

    Article  Google Scholar 

  9. M. Dæhlen and V. Skyth. Modelling Non-rectangular Surfaces using Boxsplines. In D. C. Handscomb, Mathematics of Surfaces III, pp. 287–300. 1989.

    Google Scholar 

  10. W. A. Dahmen, R. H. J. Gmelig Meyling, and J. H. M. Ursem. Scattered Data Interpolation by Bivariate C 1-piecewise Quadratic Functions. Approximation Theory and its Applications, 6:6–29, 1990.

    MATH  MathSciNet  Google Scholar 

  11. O. Davydov and F. Zeilfelder. Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines. Advances in Comp. Math., 21:223–271, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. de Casteljau. Outillages Méthodes Calcul. Technical report, Andre Citroen Automobiles, Paris, 1959.

    Google Scholar 

  13. P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, 1993.

    Google Scholar 

  14. P. Dierckx, S. Van Leemput, and T. Vermeire. Algorithms for Surface Fitting using Powell-Sabin Splines. IMA Journal of Numerical Analysis, 12(2):271–299, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. ROAMing Terrain: Real-time Optimally Adapting Meshes. In Proc. IEEE Visualization, pp. 81–88, 1997.

    Google Scholar 

  16. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, 4. edition, 1993.

    Google Scholar 

  17. R. L. Ferguson, R. Economy, W. A. Kelley, and P. P. Ramos. Continuous Terrain Level of Detail for Visual Simulation. In Proc. Image V Conference 1990, pp. 145–151, 1990.

    Google Scholar 

  18. D. R. Forsey and R. H. Bartels. Surface Fitting with Hierarchical Splines. ACM Transactions on Graphics, 14(2):134–161, April 1995.

    Article  Google Scholar 

  19. R. Franke. Scattered Data Interpolation: Test of Some Methods. Mathematics of Computation, 38(157):181–200, January 1982.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Franke and H. Hagen. Least Squares Surface Approximation using Multiquadrics and Parameter Domain Distortion. Computer Aided Geometric Design, 16(3):177–196, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. H. J. Gmelig Meyling and P. R. Pfluger. Smooth Interpolation to Scattered Data by Bivariate Piecewise Polynomials of Odd Degree. Computer Aided Geometric Design, 7(5):439–458, August 1990.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. F. Gregorski, B. Hamann, and K. I. Joy. Reconstruction of B-spline Surfaces from Scattered Data Points. In Proc. Computer Graphics International 2000, pp. 163–170, 2000.

    Google Scholar 

  23. G. Greiner and K. Hormann. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product Splines. In A. Le Méhauté, C. Rabut, and L. L. Schumaker, Surface Fitting and Multiresolution Methods, pp. 163–172. 1996.

    Google Scholar 

  24. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise Smooth Surface Reconstruction. In Computer Graphics (SIGGRAPH’ 94 Conf. Proc.), pp. 295–302, 1994.

    Google Scholar 

  25. R. Klein, D. Cohen-Or, and T. Hüttner. Incremental View-dependent Multiresolution Triangulation of Terrain. The Journal of Visualization and Computer Animation, 9(3):129–143, July-September 1998.

    Article  Google Scholar 

  26. P. Lancaster and K. Šalkauskas. Curve and Surface Fitting. Academic Press, 1986.

    Google Scholar 

  27. C.-H. Lee and Y. G. Shin. A Terrain Rendering Method Using Vertical Ray Coherence. Journal of Visualization and Computer Animation, 8(2):97–114, 1997.

    Article  Google Scholar 

  28. S. Lee, G. Wolberg, and S. Y. Shin. Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):228–244, July 1997.

    Article  Google Scholar 

  29. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes, N. Faust, and G. Turner. Real-Time, Continuous Level of Detail Rendering of Height Fields. In Computer Graphics (SIGGRAPH’ 96 Conf. Proc.), pp. 109–118, 1996.

    Google Scholar 

  30. S. K. Lodha and R. Franke. Scattered Data Techniques for Surfaces. In H. Hagen, G. Nielson, and F. Post, Proc. Dagstuhl Conf. Scientific Visualization, pp. 182–222, 1999.

    Google Scholar 

  31. M. Morandi Cecchi, S. De Marchi, and D. Fasoli. A Package for Representing C 1 Interpolating Surfaces: Application to the Lagoon of Venice’s Bed. Numerical Algorithms, 20(2,3):197–215, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Nürnberger, L. L. Schumaker, and F. Zeilfelder. Local Lagrange Interpolation by Bivariate C 1 Cubic Splines. In Proc. Conference on Curves and Surfaces, 2001. in print.

    Google Scholar 

  33. G. Nürnberger and F. Zeilfelder. Local Lagrange Interpolation by Cubic Splines on a Class of Triangulations. In Proc. Conf. Trends in Approximation Theory 2000, pp. 341–350, 2001.

    Google Scholar 

  34. R. Pfeifle and H.-P. Seidel. Fitting Triangular B-splines to Functional Scattered Data. In Proc. Graphics Interface’ 95, pp. 80–88, 1995.

    Google Scholar 

  35. M. J. D. Powell. Radial Basis Functions for Multivariable Interpolation. In J. C. Mason and M. G. Cox, Algorithms for Approximation of Functions and Data, pp. 143–168. 1987.

    Google Scholar 

  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2. edition, 1992.

    Google Scholar 

  37. H. Qin and D. Terzopoulos. D-NURBS: A Physics-Based Framework for Geometric Design. IEEE Transactions on Visualization and Computer Graphics, 2(1):85–96, March 1996.

    Article  Google Scholar 

  38. R. Schaback. Improved Error Bounds for Scattered Data Interpolation by Radial Basis Functions. Mathematics of Computation, 68(225):201–216, January 1999.

    Article  MATH  MathSciNet  Google Scholar 

  39. F. J. M. Schmitt, B. B. Barsky, and W. Du. An Adaptive Subdivision Method for Surface-Fitting from Sampled Data. In Computer Graphics (SIGGRAPH’ 86 Conf. Proc.), pp. 179–188, 1986.

    Google Scholar 

  40. L. L. Schumaker. Fitting Surfaces to Scattered Data. In G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Approximation Theory II, pp. 203–268. 1976.

    Google Scholar 

  41. D. A. Southard. Piecewise Planar Surface Models from Sampled Data. In Proc. Computer Graphics International’ 91), pp. 667–680, 1991.

    Google Scholar 

  42. A. J. Stewart. Hierarchical Visibility in Terrains. In Rendering Techniques’ 97 (Proc. 8th EG Workshop on Rendering), pp. 217–228, 1997.

    Google Scholar 

  43. C. Wiley, A. T. Campbell III, S. Szygenda, D. Fussell, and F. Hudson. Multiresolution BSP Trees Applied to Terrain, Transparency, and General Objects. In Proc. Graphics Interface’ 97, pp. 88–96, 1997.

    Google Scholar 

  44. M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide. Addison-Wesley, Reading, MA, 1999.

    Google Scholar 

  45. W. Zhang, Z. Tang, and J. Li. Adaptive Hierarchical B-Spline Surface Approximation of Large-Scale Scattered Data. In Proc. Pacific Graphics’ 98, pp. 8–16, 1998.

    Google Scholar 

  46. J. Zhou, N. M. Patrikalakis, S. T. Tuohy, and X. Ye. Scattered Data Fitting with Simplex Splines in Two and Three Dimensional Spaces. The Visual Computer, 13(7):295–315, 1997.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haber, J., Zeilfelder, F., Davydov, O., Seidel, HP. (2008). Smooth Approximation and Rendering of Large Scattered Data Sets. In: Breitner, M.H., Denk, G., Rentrop, P. (eds) From Nano to Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74238-8_11

Download citation

Publish with us

Policies and ethics