Skip to main content

Cauchy’s Theorem and Edge Lengths of Convex Polyhedra

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

In this paper we explore, from an algorithmic point of view, the extent to which the facial angles and combinatorial structure of a convex polyhedron determine the polyhedron—in particular the edge lengths and dihedral angles of the polyhedron. Cauchy’s rigidity theorem of 1813 states that the dihedral angles are uniquely determined. Finding them is a significant algorithmic problem which we express as a spherical graph drawing problem. Our main result is that the edge lengths, although not uniquely determined, can be found via linear programming. We make use of significant mathematics on convex polyhedra by Stoker, Van Heijenoort, Gale, and Shepherd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Ziegler, G.M.: Proofs from the Book, 3rd edn. Springer, Heidelberg (2003)

    Google Scholar 

  2. Alboul, L., Echeverria, G., Rodgrigues, M.: Discrete curvatures and gauss maps for polyhedral surfaces. In: European Workshop on Computational Geometry (2005), http://www.win.tue.nl/EWCG2005/Proceedings/18.pdf

  3. Alexandrov, A.D.: Convex Polyhedra. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9, 349–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted delaunay triangulations, and mixed volumes (2006), http://www.citebase.org/

  6. Cromwell, P.R.: Polyhedra. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  7. Das, G., Goodrich, M.T.: On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees. Computational Geometry Theory and Applications 8, 123–137 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Demaine, E.D., Erickson, J.: Open problems on polytope reconstruction (July 1999), http://theory.csail.mit.edu/~edemaine/papers/PolytopeReconstruction/

  9. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  10. Devillers, O., Liotta, G., Preparata, F., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Computational Geometry: Theory and Applications 11, 187–208 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Gale, D.: Irreducible convex sets. In: Proc. International Congress of Mathematicians, vol. II, pp. 217–218. North-Holland, Amsterdam (1954)

    Google Scholar 

  12. Garg, A.: New results on drawing angle graphs. Computational Geometry Theory and Applications 9, 43–82 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Van Heijenoort, J.: On locally convex manifolds. Communications on Pure and Applied Mathematics 5, 223–242 (1952)

    Article  MathSciNet  Google Scholar 

  14. Kaibel, V., Pfetsch, M.E.: Some algorithmic problems in polytope theory. Algebra, Geometry, and Software Systems 23–47 (2003)

    Google Scholar 

  15. Lucier, B.: Unfolding and reconstructing polyhedra. Master’s thesis, David R. Cheriton School of Computer Science, University of Waterloo (2006)

    Google Scholar 

  16. McMullen, P.: Representations of polytopes and polyhedral sets. Geometriae Dedicata 2, 83–99 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mehlhorn, K., Näher, S., Seel, M., Schilz, T., Schirra, S., Uhrig, C.: Checking geometric programs or verification of geometry structures. Computational Geometry: Theory and Applications 12, 85–103 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Meyer, W.: Indecomposable polytopes. Transactions of the American Mathematical Society 190, 77–86 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. O’Rourke, J.: Computational geometry column. SIGACT News 38(2) (to appear)

    Google Scholar 

  20. Rybnikov, K.A.: Fast verification of convexity of piecewise-linear surfaces. CoRR, cs.CG/0309041 (2003), http://arxiv.org/abs/cs.CG/0309041

  21. Sabitov, I.K.: The volume as a metric invariant of polyhedra. Discrete and Computational Geometry 20(4), 405–425 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  23. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces for meshing using angle based flattening. Engineering with Computers 17(3), 326–337 (2001)

    Article  MATH  Google Scholar 

  24. Sheffer, A., Gotsman, C., Dyn, N.: Robust spherical parameterization of triangular meshes. Computing 72, 185–193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shephard, G.C.: Decomposable convex polyhedra. Mathematika 10, 89–95 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stoker, J.J.: Geometrical problems concering polyhedra in the large. Communications on Pure and Applied Mathematics 11, 119–168 (1968)

    Article  MathSciNet  Google Scholar 

  27. Vijayan, G.: Geometry of planar graphs with angles. In: Proc. 2nd Annual ACM Symposium on Computational Geometry, pp. 116–124 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biedl, T., Lubiw, A., Spriggs, M. (2007). Cauchy’s Theorem and Edge Lengths of Convex Polyhedra. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics