Skip to main content

Single Enzyme Kinetics: A Study of the Yeast Enzyme Candida Antarctica Lipase B

  • Chapter
Single Molecules and Nanotechnology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 12))

  • 1238 Accesses

Enzymes are a class of (bio)molecules that function as catalysts of (bio)chemical reactions. They highly accelerate the rate of (bio)chemical reactions (Fersht 1985). During the past decades, our knowledge about enzymes has greatly increased. Enzymes are almost always proteins which are very complex structures having many degrees of motional freedom. Much insight into the structures of these and other biomolecules is obtained by X-ray crystallography (Fersht 1985), nuclear magnetic resonance (NMR; Matthews and Van Holde (1996)), and molecular dynamics simulations (MDS) studies (Jensen et al. 2002). Most of the information available on enzymes has been primarily obtained by means of ensemble measurements. Unfortunately, these data do not give further insight in the static and dynamic heterogeneities. This is important as enzymes are not static molecules. The primary structure can fold into many slightly different conformations with different chemical activity (Frauenfelder et al. 1991). A well-studied process, for example, is the binding of carbon monoxide (CO) to myoglobin (Mb).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelhorst K, Björkling F, Godtfredsen SE, Kirk O (1990) Enzyme catalyzed preparation of 6-O-acylglucopyranosides. Synthesis-Stuttgart (2): 112–115.

    Google Scholar 

  • Agmon N (2000) Conformational cycle of a single working enzyme. J. Phys. Chem. B, 104: 7830–7834.

    Article  CAS  Google Scholar 

  • Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst - Many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransfor., 16: 181–204.

    Article  CAS  Google Scholar 

  • Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IET, Sauke TB, Shyamsunder E, Young RD (1985) Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA, 82: 5000–5004.

    Article  PubMed  CAS  Google Scholar 

  • Astumian RD (2002) Protein conformational fluctuations and free-energy transduction. Appl. Phys. A, 75: 193–206.

    Article  CAS  Google Scholar 

  • Berezhkovskii AM, Boguñá M, Weiss GH (2001) Evaluation of rate constants for conformational transitions using single-molecule fluorescence spectroscopy. Chem. Phys. Lett., 336: 321–324.

    Article  CAS  Google Scholar 

  • Berezhkovskii AM, Szabo A, Weiss GH (1999) Theory of single-molecule fluorescence spectroscopy of two-state systems. J. Chem. Phys., 110: 9145–9150.

    Article  CAS  Google Scholar 

  • Bosley JA, Peilow AD (1997) Immobilisation of lipases on porous polypropylene: reduction in esterification efficiency at low loading. J. Am. Oil Chem. Soc., 74: 107–111.

    Article  CAS  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Mengen U (1990) A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature, 343: 767–770.

    Article  PubMed  CAS  Google Scholar 

  • Cao J (2000) Event-averaged measurements of single-molecule kinetics. Chem. Phys. Lett., 327: 38–44.

    Article  CAS  Google Scholar 

  • Cao LQ, Bornscheuer UT, Schmid RD (1996) Lipase-catalyzed solid phase synthesis of sugar esters. Fett-Lipid, 98(10): 332–335.

    Article  CAS  Google Scholar 

  • Cao LQ, Fischer A, Bornscheuer UT, Schmid RD, (1997) Lipase-catalyzed. solid phase synthesis of sugar fatty acids esters. Biocatal. Biotransfor., 14(4): 269–283.

    Article  CAS  Google Scholar 

  • Córdova A, Hult K, Iversen T (1997) Esterification of methyl glycoside mixtures by lipase catalysis. Biotechnol. Lett., 19(1): 15–18.

    Article  Google Scholar 

  • Dubreuil A-C, Doumenc F, Guerrier B, Johannsmann D, Allain C (2003) Analysis of the solvent diffusion in glassy polymer films using a set inversion method. Polymer, 44: 377–387.

    Article  CAS  Google Scholar 

  • Edman L, Földes-Papp Z, Wennmalm S, Rigler R (1999) The fluctuating enzyme: A single molecule approach. Chem. Phys., 247: 11–22.

    Article  CAS  Google Scholar 

  • Edman L, Rigler R (2000) Memory landscapes of single-enzyme molecules. Proc. Natl. Acad. Sci. USA, 97: 8266–8271.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Lorente G Terreni M, Mateo C, Bastida A, Fernández-Lafuente R, Dalmases P, Huguet J, Guisán JM (2001) Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: Enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme Microb. Tech., 28: 389–396.

    Article  Google Scholar 

  • Fersht A (1985) Enzyme Structure and Mechanism, 2nd edition, W.H. Freeman, New York.

    Google Scholar 

  • Flomenbom O, Klafter J, Szabo A (2005) What can one learn from two-state single molecule trajectories? Biophys. J., 88: 3780–3783.

    Article  PubMed  CAS  Google Scholar 

  • Flomenbom O, Velonia K, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan A, Nolte R.J.M, Van der Auweraer M, De Schryver FC, Klafter J (2005) Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl. Acad. Sci. USA, 102, 7: 2368–2372.

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, McMahon BH, Austin RH, Chu K, Groves JT (2001) The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc. Natl. Acad. Sci. USA, 98: 2370–2374.

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science, 254: 1598–1603.

    Article  PubMed  CAS  Google Scholar 

  • Garcia HS, Yang B, Parkin KL (1996) Continuous reactor for enzymic glycerolysis of butter oil in the absence of solvent. Food Res. Int., 28: 605–609.

    Article  Google Scholar 

  • Geva E, Skinner JL (1998) Two-state dynamics of single biomolecules in solution. Chem. Phys. Lett., 288: 225–229.

    Article  CAS  Google Scholar 

  • Geyer U, Klemm D, Pavel K, Ritter H (1995) Enzymes in polymer chemistry. 8. Chemoenzymatic synthesis of polymerizable 11-meth acryloyl-amino-undecanoic ester of 1- and 3-O-methyl-a-D-glucose in 6-O-position. Macromol. Chem. Rapid Comm., 16: 337–341.

    Article  CAS  Google Scholar 

  • Heldt-Hansen HP, Ishii M, Patkar S, Hansen TT, Eigtred P (1989) In: Biocatalysis in Agricultural Biotechnology (eds.) Whitaker J.R. and Sonnet P.E., Am. Chem. Soc., Washington D.C.: pp 158–172.

    Google Scholar 

  • Jensen MØ, Jensen TR, Kjaer K, Bjørnholm T, Mouritsen OG, Peters GH, (2002) Orientation and conformation of a lipase at an air–water interface: Molecular dynamics simulations. Biophys. J., 83: 98–111.

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Sytnik A, Li L, Vladimirov S, Cooperman BS, Hochstrasser RM (1997) Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions. Proc. Natl. Acad. Sci. USA, 94: 7932–7936.

    Article  PubMed  CAS  Google Scholar 

  • Kirk O, Christensen MW, Beck F, Damhus T (1995) Lipase catalyzed regioselective acylation and deacylation of glucose derivatives. Biocatal. Biotransfor., 12: 91–97.

    Article  CAS  Google Scholar 

  • Kou SC, Cherayil BJ, Min W, English BP, Xie XS (2005) Single-Molecule Michaelis–Menten Equations. J. Phys. Chem. B, 109: 19068–19081.

    Article  PubMed  CAS  Google Scholar 

  • Lee AI, Brody JP (2005) Single-molecule enzymology of chymotrypsin using water-in-oil emulsion. Biophys. J., 88: 4303–4311.

    Article  PubMed  CAS  Google Scholar 

  • Lerch H-P, Rigler R, Mikhailov AS (2005) Functional conformational motions in the turnover cycle of cholesterol oxidase. Proc. Natl. Acad. Sci. USA, 102, 31: 10807–10812.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey CP, Patterson GD (1980) Detailed comparison of the Williams–Watts and Cole–Davidson functions. J. Chem. Phys., 73: 3348–3357.

    Article  CAS  Google Scholar 

  • Ljunger G, Adlercreutz P, Mattiasson B (1994) Lipase-catalyzed acylation of glucose. Biotechnol. Lett., 16(11): 1167–1172.

    Article  CAS  Google Scholar 

  • Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science, 282: 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  • Mahapatro A, Kumar A, Kalra B, Gross RA (2004) Solvent-free adipic acid/1, 8-octanediol condensation polymerizations catalyzed by Candida antartica lipase B. Macromolecules, 37: 35–40.

    Article  CAS  Google Scholar 

  • Martinelle M, Hult K (1995) Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B. Biochim. Biophys. Acta, 1251: 191–197.

    PubMed  Google Scholar 

  • Matthews CK, Van Holde KE (1996) Biochemistry, 2nd edition, Benjamin-Cummings, CA: 208–210.

    Google Scholar 

  • Mattson A, Öhrner N, Hult K, Norin T (1993) Resolution of diols with C2-symmetry by lipase catalysed transesterification. Tetrahedr. Asymm., 4: 925–930.

    Article  CAS  Google Scholar 

  • Metzler R, Klafter J, Jortner J (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Natl. Acad. Sci. USA, 96: 11085–11089.

    Article  PubMed  CAS  Google Scholar 

  • Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J. Am. Chem. Oil. Soc., 73: 1191–1195.

    Article  CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The alpha/beta hydrolase fold. Protein Eng., 5: 197–211.

    Article  PubMed  CAS  Google Scholar 

  • Onuchic JN, Wang J, Wolynes PG (1999) Analyzing single molecule trajectories on complex energy landscapes using replica correlation function. Chem. Phys., 247: 175–184.

    Article  CAS  Google Scholar 

  • Partali V, Waagen V, Alvik T, Anthonsen T (1993) Enzymatic resolution of butanoic esters of 1-phenylmethyl and 1-[2-phenylethyl] ethers of 3-chloro-1, 2-propanediol. Tetrahedr. Assym., 4: 961–968.

    Article  CAS  Google Scholar 

  • Rogalska E, Cudrey C, Ferrato F, Verger R (1993) Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 5: 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Vlad MO (1999) Nonlinear kinetics and new approaches to complex reaction mechanisms. Ann. Rev. Phys. Chem., 50: 51–78.

    Article  CAS  Google Scholar 

  • Rotman B (1961) Measurement of activity of single molecules of ß -D-galactosidase. Proc. Nat. Acad. Sci. U.S.A., 47, 1981–1991.

    Article  CAS  Google Scholar 

  • Rotman, B (1973) in Fluorescence Techniques in Cell Biology (eds.) Thaer AA, Sernetz M, Springer, New York, pp. 333–337.

    Google Scholar 

  • Schenter GK, Lu HP, Xie XS (1999) Statistical analyses and theoretical models of single-molecule enzymatic dynamics. J. Phys. Chem. A, 103: 10477–10488.

    Article  CAS  Google Scholar 

  • Taylor A, Binns F (1994) Enzymatic synthesis. World Patent WO 94/12625.

    Google Scholar 

  • Van Tilbeurgh H, Egloff M-P, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 362: 814–820.

    Article  PubMed  CAS  Google Scholar 

  • Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan AE, Klafter J, Nolte RJM, De Schryver FC (2005) Single enzyme kinetics of CALB catalyzed hydrolysis. Angew. Chem. Int. Ed. 44: 560–564.

    Article  CAS  Google Scholar 

  • Xie XS (2002) Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J. Chem. Phys. 117: 11024–11032.

    Article  Google Scholar 

  • Xie XS, Lu HP (1999) Single molecule enzymology. J. Biol. Chem., 274: 15967–15970.

    Article  PubMed  CAS  Google Scholar 

  • Xue Q, Yeung ES (1995) Differences in the chemical reactivity of individual molecules of an enzyme. Nature, 373: 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Xie XS (2002) Statistical approaches for probing single-molecule dynamics photon-by-photon. Chem. Phys., 284: 423–437.

    Article  CAS  Google Scholar 

  • Yang S, Cao J (2002) Direct measurements of memory effects in single molecule kinetics. J. Chem. Phys., 117: 10996–11009.

    Article  CAS  Google Scholar 

  • Yip W-T, Hu D, Yu J, Vanden Bout DA, Barbara PF (1998) Classifying the photophysical dynamics of single- and multiple-chromophoric molecules by single molecule spectroscopy. J. Phys. Chem. A, 102: 7564–7575.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verheijen, W., Loos, D., De Schryver, F.C., Hofkens, J. (2008). Single Enzyme Kinetics: A Study of the Yeast Enzyme Candida Antarctica Lipase B. In: Rigler, R., Vogel, H. (eds) Single Molecules and Nanotechnology. Springer Series in Biophysics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73924-1_7

Download citation

Publish with us

Policies and ethics