Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1919))

We aim to construct a general framework for portfolio management in continuous time, encompassing both stocks and bonds. In these lecture notes we give an overview of the state of the art of optimal bond portfolios and we re-visit main results and mathematical constructions introduced in our previous publications (Ann. Appl. Probab. 15, 1260–1305 (2005) and Fin. Stoch. 9, 429–452 (2005)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A. and Fournier, J.J.F.: Sobolev Spaces, Academic Press 2003.

    Google Scholar 

  2. Björk, T., Kabanov, Y. and Runggaldier, W.: Bond market structure in the presence of marked point processes, Mathematical Finance, 7, 211-239 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. Björk, T., Masi, G., Kabanov, Y. and Runggaldier, W.: Toward a general theory of bond markets, Finance and Stochastics, 1, 141-174 (1997).

    Article  MATH  Google Scholar 

  4. Björk, T. and Svensson, L.: On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models, Mathematical Finance, 11, 205-243 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderon, A.P.: Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math. IV, AMS 1961, 33-49.

    Google Scholar 

  6. Carmona, R. and Tehranchi, M.: A Characterization of Hedging Portfolios for Interest Rate Contingent Claims, Ann. Appl. Probab. 14, 1267-1294 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. 6′ . Carmona, R. and Tehranchi, M.: “Interest rate models: an infinite dimensional stochastic approach”, Springer 2006.

    Google Scholar 

  8. Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.

    Google Scholar 

  9. De Donno, M. and Pratelli, M.: On the use of measure-valued strategies in bond markets, Finance and Stochastics, 8, 87-109 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  10. Ekeland, I. and Témam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM 1999.

    Google Scholar 

  11. Ekeland, I. and Taflin, E.: A Theory of Bond Portfolios, Ann. Appl. Probab. 15, 1260-1305 (2005). Also http://arxiv.org/abs/math.OC/0301278

  12. Filipovi ć , D.: Consistency Problems for HJM Interest Rate Models, Phd thesis, Dep. Math. ETH, Zürch 2000 Preprint 2001.

    Google Scholar 

  13. Heath, D.C., Jarrow, R.A. and Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation, Econometrica, 60, 77-105 (1992).

    Article  MATH  Google Scholar 

  14. Hörmander, L.: The analysis of linear partial differential operators, Vol. I, Springer-Verlag 1985.

    Google Scholar 

  15. Kallianpur, G., and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes-Monograph Series, Institute of Mathematical Statistics, 1995.

    Google Scholar 

  16. Karatzas, I. and Shreve, S.E.: Methods of Mathematical Finance, Applications of Mathematics, Volume 9, Springer-Verlag 1999.

    Google Scholar 

  17. Kato, T. Perturbation Theory for Linear Operators, Die Grundleheren der mathematischen Wissenschaften, Volume 132, Springer-Verlag, New York 1966.

    Google Scholar 

  18. Kramkov, D. and Schachermayer W.: The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets, Annals Appl. Probability, 9, 904-950 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  19. Lax, P.D.: Functional Analysis, Wiley-Interscience 2002.

    Google Scholar 

  20. Lintner, J.: The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets, The Review of Economics and Statistics, 47, 13-37 (1965).

    Article  Google Scholar 

  21. Markowitz, H.: Portfolio Selection, Jour. Finance, 7, 77-91 (1952).

    Article  Google Scholar 

  22. Merton, R.: Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time case, Rev. Economics and Stat. 51, 247-257 (1969).

    Article  Google Scholar 

  23. Merton, R.: Optimum Consumption and Portfolio Rules in a Continuous Time Model, Jour. Economic Theory, 3, 373-413 (1971).

    Article  MathSciNet  Google Scholar 

  24. Mikulevicius, R. and Rozovskii, B.L.: Normalized stochastic integrals in topological vector spaces, Seminaire de Probabilites XXXII, LNM, Springer-Verlag, 1998.

    Google Scholar 

  25. Mikulevicius, R. and Rozovskii, B.L.: Martingale problems for SPDE’s, Stochastic Partial Differential Equations: Six Perspectives, Ed: R. Carmona and BL Rozovskii, AMS, Mathematical Surveys and Monographs, 1999.

    Google Scholar 

  26. Musiela, M., Stochastic PDEs and term structure models, Journées Internationales de Finance, IGR-AFFI, La Baule, 1993.

    Google Scholar 

  27. Nualart D.: The Malliavin Calculus and Related Topics, Probability and its Applications, Springer-Verlag, 1991.

    Google Scholar 

  28. Pham, H.: A predictable decomposition in infinite asset model with jumps. Application to hedging and optimal investment, Stochastics and Stochastic Reports, 5, 343-368 (2003).

    Article  MathSciNet  Google Scholar 

  29. Pliska, S.R.: A stochastic calculus model of continuous trading: optimal portfolios, Math. Operations Research 11, 371-382 (1986).

    Article  MathSciNet  Google Scholar 

  30. Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, Grundlehren der mathematischen Wissenschaften, Band 293, Spriner-Verlag 1994.

    Google Scholar 

  31. Rudin, W.: Real and Complex Analysis, 3rd edition, McGraw-Hill, 1986.

    Google Scholar 

  32. Rudin, W.: Functional Analysis, 2nd edition, McGraw-Hill, 1991.

    Google Scholar 

  33. Rutkowski, R.: Self-financing Trading Strategies for Sliding, Rolling-horizon, and Consol Bonds, Math. Finance 5, 361-385 (1999).

    Article  MathSciNet  Google Scholar 

  34. Sharp, W.F.: Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, The Journal of Finance, 19, 425-442 (1964).

    Article  Google Scholar 

  35. Taflin, E.: Bond Market Completeness and Attainable Contingent Claims, Fin. Stoch. 9, 429-452 (2005). Preprint http://arxiv.org/abs/math.OC/0402364

  36. Yosida, K.: Functional Analysis, Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ekeland, I., Taflin, E. (2007). Optimal Bond Portfolios. In: Paris-Princeton Lectures on Mathematical Finance 2004. Lecture Notes in Mathematics, vol 1919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73327-0_2

Download citation

Publish with us

Policies and ethics