Skip to main content

Image Classification Using Marginalized Kernels for Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

We propose in this article an image classification technique based on kernel methods and graphs. Our work explores the possibility of applying marginalized kernels to image processing. In machine learning, performant algorithms have been developed for data organized as real valued arrays; these algorithms are used for various purposes like classification or regression. However, they are inappropriate for direct use on complex data sets. Our work consists of two distinct parts. In the first one we model the images by graphs to be able to represent their structural properties and inherent attributes. In the second one, we use kernel functions to project the graphs in a mathematical space that allows the use of performant classification algorithms. Experiments are performed on medical images acquired with various modalities and concerning different parts of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proc. 23rd Int. Conf. on Machine Learning (2006)

    Google Scholar 

  2. Chapelle, O., Haffner, P., Vapnik, V.: Svms for histogram-based image classification. IEEE Transactions on Neural Networks, special issue on Support Vectors (1999)

    Google Scholar 

  3. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV), (2005)

    Google Scholar 

  4. Ros, J., Laurent, C., Jolion, J.M., Simand, I.: Comparing string representations and distances in a natural images classification task. In: GbR 2005, 5th IAPR-TC-15 workshop on graph-based representations, pp. 72–81 ( 2005)

    Google Scholar 

  5. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for attributed graph matching. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 352–361. Springer, Heidelberg (2005)

    Google Scholar 

  6. Neuhaus, M., Bunke, H.: A random walk kernel derived from graph edit distance. In: SSPR/SPR, pp. 191–199 ( 2006)

    Google Scholar 

  7. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, Chichester (1998)

    MATH  Google Scholar 

  8. Gaertner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Proc. 16th Annual Conf. on Computational Learning Theory, pp. 129–143 ( 2003)

    Google Scholar 

  9. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20st Int. Conf. on Machine Learning, pp. 321–328 ( 2003)

    Google Scholar 

  10. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginalized graph kernels. In: ICML 2004: Proc. 21st Int. Conf. on Machine Learning (2004)

    Google Scholar 

  11. Borgwardt, K., Vishwanathan, S., Schraudolph, N., Kriegel, H.P.: Protein function prediction via faster graph kernels. In: NIPS Bioinformatics Workshop (2005)

    Google Scholar 

  12. Haris, K., Estradiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7, 1684–1699 (1998)

    Article  Google Scholar 

  13. Beaulieu, J.M., Goldberg, M.: Hierarchy in picture segmentation: A stepwise optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 11, 150–163 (1989)

    Article  Google Scholar 

  14. Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinatorial pyramid framework. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 34–44. Springer, Heidelberg (2006)

    Google Scholar 

  15. Mahé, P., Ralaivola, L., Stoven, V., Vert, J.P.: The pharmacophore kernel for virtual screening with support vector machines. J. Chem. Inf. Model. 46, 2003–2014 (2006)

    Article  Google Scholar 

  16. Schlkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. The MIT Press, Cambridge, Massachussetts (2004)

    Google Scholar 

  17. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aldea, E., Atif, J., Bloch, I. (2007). Image Classification Using Marginalized Kernels for Graphs. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics