Skip to main content

Faithful Recovery of Vector Valued Functions from Incomplete Data

Recolorization and Art Restoration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed in an Allied bombing along with the inestimable frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years, several attempts have been made to restore the fresco fragments by traditional methods, but without much success. We have developed an efficient pattern recognition algorithm to map the original position and orientation of the fragments, based on comparisons with an old gray level image of the fresco prior to the damage. This innovative technique allowed for the partial reconstruction of the frescoes. Unfortunately, the surface covered by the fragments is only 77 m 2, while the original area was of several hundreds. This means that we can reconstruct only a fraction (less than 8%) of this inestimable artwork. In particular the original color of the blanks is not known. This begs the question of whether it is possible to estimate mathematically the original colors of the frescoes by making use of the potential information given by the available fragments and the gray level of the pictures taken before the damage. Can one estimate how faithful such restoration is? In this paper we retrace the development of the recovery of the frescoes as an inspiring and challenging real-life problem for the development of new mathematical methods. We introduce two models for the recovery of vector valued functions from incomplete data, with applications to the fresco recolorization problem. The models are based on the minimization of a functional which is formed by the discrepancy with respect to the data and additional regularization constraints. The latter refer to joint sparsity measures with respect to frame expansions for the first functional and functional total variation for the second. We establish the relations between these two models. As a byproduct we develop the basis of a theory of fidelity in color recovery, which is a crucial issue in art restoration and compression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballester, C., et al.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baron, D., et al.: Distributed compressed sensing. Preprint (2005)

    Google Scholar 

  3. Beltramio, M., et al.: Image inpainting. In: SIGGRAPH 2000 (2001)

    Google Scholar 

  4. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Romberg, E.J., Tao, T.: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  Google Scholar 

  6. Candès, E.J., Romberg, E.J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Preprint (2005)

    Google Scholar 

  7. Caselles, V., Coll, V., Morel, J.-M.: Geometry and color in natural images. Journal of Mathematical Imaging and Vision 16(2), 89–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cazzato, R., et al.: Il Progetto Mantegna: storia e risultati. In: Spiazzi, A.M., De Nicolò Salmazo, A., Toniolo, D. (eds.) Andrea Mantegna e i Maestri della Cappella Ovetari: La Ricomposizione Virtuale e il Restauro, Skira, Milano (2006)

    Google Scholar 

  9. Chan, T.F., Kang, S.H.: Error analysis for image inpainting. UCLA CAM 04-72 (2004)

    Google Scholar 

  10. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvaure-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Chan, T.F., Shen, J.: Inpainting based on nonlinear transport and diffusion. Contemp. Math. 313, 53–65 (2002)

    MathSciNet  Google Scholar 

  12. Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, T.F., Shen, J.: Variational image inpainting. Commun. Pure Appl. Math. 58(5), 579–619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., Defrise, M., DeMol, C.: An iterative thresholding algorithm for linear inverse problems. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho, D.L.: Compressed Sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  16. Elad, M., et al.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fornasier, M.: Nonlinear projection recovery in digital inpainting for color image restoration. J. Math. Imaging Vis. 24(3), 359–373 (2006)

    Article  MathSciNet  Google Scholar 

  18. Fornasier, M., March, R.: Restoration of color images by vector valued BV functions and variational calculus. Johann Radon Institute for Computational and Applied Mathematics (RICAM), preprint 2006-30 (2006), http://www.ricam.oeaw.ac.at/publications/reports/06/rep06-30.pdf

  19. Fornasier, M., Rauhut, H.: Recovery algorithms for vector valued data with joint sparsity constraints. Johann Radon Institute for Computational and Applied Mathematics (RICAM) preprint 2006-27 (2006), http://www.ricam.oeaw.ac.at/publications/reports/06/rep06-27.pdf

  20. Fornasier, M., Toniolo, D.: Fast, robust, and efficient 2D pattern recognition for re-assembling fragmented digital images. Pattern Recognition 38, 2074–2087 (2005)

    Article  Google Scholar 

  21. Gao, H.-Y., Bruce, A.G.: WaveShrink with firm shrinkage. Statist. Sinica 7(4), 855–874 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Kang, S.H., March, R.: Variational models for image colorization via Chromaticity and Brightness decomposition. Preprint (2006)

    Google Scholar 

  23. Levin, A., Lischinski, A., Weiss, Y.: Colorization using optimization. ACM Transactions on Graphics (Proceedings of the 2004 SIGGRAPH Conference) 23(3), 689–694 (2004)

    Article  Google Scholar 

  24. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Masnou, S.: Filtrage et Désocclusion d’Images par Méthodes d’Ensembles de Niveau. PhD Thesis, Université Paris-Dauphine (1998)

    Google Scholar 

  26. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. on Image Processing 11(2), 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  27. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proceedings of 5th IEEE Int’l Conf. on Image Process, Chicago, vol. 3, pp. 259–263 (1998)

    Google Scholar 

  28. Mumford, D.: Elastica and computer vision. In: Bajaj, C. (ed.) Algebraic geometry and applications, pp. 491–506. Springer, Heidelberg (1994)

    Google Scholar 

  29. Sapiro, G.: Inpainting the colors. In: IEEE International Conference on Image Processing (ICIP 2005), vol. 2, pp. 698–701 (2005)

    Google Scholar 

  30. Tropp, J.: Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86, 589–602 (2006)

    Article  Google Scholar 

  31. Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Transactions on Image Processing 15(5), 1120–1129 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fornasier, M. (2007). Faithful Recovery of Vector Valued Functions from Incomplete Data. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics