Skip to main content

Thiosulfate and Sulfur Oxidation in Purple Sulfur Bacteria

  • Conference paper
Microbial Sulfur Metabolism

In chemotrophic and phototrophic sulfur oxidizers that do not form sulfur deposits a periplasmic thiosulfate-oxidizing multienzyme complex (Sox complex) has been described to be responsible for formation of sulfate from thiosulfate. In the anoxygenic phototrophic sulfur bacterium Allochromatium vinosum intracellular sulfur globules are an obligate intermediate during the oxidation of thiosulfate to sulfate. Despite this fundamental difference A. vinosum possesses five sox genes in two independent loci (soxBXA and soxYZ) encoding proteins related to components of the Sox complex from Paracoccus pantotrophus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118.

    Article  CAS  PubMed  Google Scholar 

  • Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610.

    Article  CAS  PubMed  Google Scholar 

  • Bartsch RG, Newton GL, Sherrill C, Fahey RC (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178:4742–4746.

    CAS  PubMed  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221.

    Article  CAS  PubMed  Google Scholar 

  • Brune DC (1995a) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 847–870.

    Google Scholar 

  • Brune DC (1995b) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399.

    Article  CAS  PubMed  Google Scholar 

  • Cheesman MR, Little PJ, Berks BC (2001) Novel heme ligation in a c-type cytochrome involved in thiosulfate oxidation: EPR and MCD of SoxAX from Rhodovulum sulfidophilum. Biochemistry 40:10562–10569.

    Article  CAS  PubMed  Google Scholar 

  • Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology 142:3363–3372.

    Article  CAS  PubMed  Google Scholar 

  • Dahl C (1999) Deposition and oxidation of polymeric sulfur in prokaryotes. In: Steinbüchel A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, pp 27–34.

    Google Scholar 

  • Dahl C, Prange A (2006) Bacterial sulfur globules: occurrence, structure and metabolism. In: Shively JM (ed) Inclusions in prokaryotes. Springer, Heidelberg, pp 21–51.

    Chapter  Google Scholar 

  • Dahl C, Prange A, Steudel R (2002) Natural polymeric sulfur compounds. In: Steinbüchel A (ed) Miscellaneous biopolymers and biodegradation of synthetic polymers, vol 9. Wiley-VCH, Weinheim, pp 35–62.

    Google Scholar 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404.

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259.

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Bryant DA (2008) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Govindjee (series ed) Advances in photosynthesis and respiration, vol. 27, Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, New York (in press).

    Google Scholar 

  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide-quinone oxidoreductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565.

    Article  CAS  PubMed  Google Scholar 

  • Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810.

    Article  CAS  PubMed  Google Scholar 

  • Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143:2891–2902.

    Article  CAS  PubMed  Google Scholar 

  • Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, Jones JG, Yaguchi J, Head IM (1999) Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 49:1817–1827.

    CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21:97–108.

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951.

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48:1129–1143.

    Google Scholar 

  • Jørgensen BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol Oceanogr 35:1329–1342.

    Article  Google Scholar 

  • Kappler U, Aguey-Zinsou K-F, Hanson GR, Bernhardt PV, McEwan AG (2004) Cytochrome c551 from Starkeya novella: characterization, spectroscopic properties, and phylogeny of a diheme protein of the SoxAX family. J Biol Chem 279:6252–6260.

    Article  CAS  PubMed  Google Scholar 

  • Lu W-P, Swoboda EP, Kelly DP (1985) Properties of the thiosulfate-oxidizing multi-enzyme system from Thiobacillus versutus. Biochim Biophys Acta 828:116–122.

    CAS  Google Scholar 

  • Lübbe YJ, Youn H-S, Timkovich R, Dahl C (2006) Siro(haem) amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c diamide synthase for sulfur oxidation. FEMS Microbiol Lett 261:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Glöckner FO, Amann R (2005) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomittant horizontal transfer. J Bacteriol 187:7126–7137.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154.

    CAS  PubMed  Google Scholar 

  • Numata T, Fukai S, Ikeuchi Y, Suzuki T, Nureki O (2006) Structural basis for sulfur relay to RNA mediated by heterohexameric TusBCD complex. Structure 14:357–366.

    Article  CAS  PubMed  Google Scholar 

  • Odintsova EV, Wood AP, Kelly DP (1993) Chemolithoautotrophic growth of Thiotrix ramosa. Arch Microbiol 160:152–157.

    Article  CAS  Google Scholar 

  • Odintsova EV, Jannasch H, Mamone JA, Langworthy TA (1996) Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Bacteriol 46:422–428.

    CAS  PubMed  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444.

    Article  CAS  PubMed  Google Scholar 

  • Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197:171–178.

    Article  CAS  PubMed  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex–a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262.

    Article  CAS  PubMed  Google Scholar 

  • Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261.

    Article  CAS  PubMed  Google Scholar 

  • Podgorsek L, Imhoff JF (1999) Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat Microb Ecol 17:255–265.

    Article  Google Scholar 

  • Pott AS, Dahl C (1998) Sirohaem-sulfite reductase and other proteins encoded in the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144:1881–1894.

    Article  CAS  PubMed  Google Scholar 

  • Prange A, Chauvistre R, Modrow H, Hormes J, Trüper HG, Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148:267–276.

    CAS  PubMed  Google Scholar 

  • Prange A, Engelhardt H, Trüper HG, Dahl C (2004) The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT PCR. Arch Microbiol 182:165–174.

    Article  CAS  PubMed  Google Scholar 

  • Quentmeier A, Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503:168–172.

    Article  CAS  PubMed  Google Scholar 

  • Reinartz M, Tschäpe T, Brüser T, Trüper HG, Dahl C (1998) Sulfide oxidation in the phototrophic bacterium Chromatium vinosum. Arch Microbiol 170:59–68.

    Article  CAS  PubMed  Google Scholar 

  • Rother D, Heinrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508.

    Article  CAS  PubMed  Google Scholar 

  • Sander J, Engels-Schwarzlose S, Dahl C (2006) Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 186:357–366.

    Article  CAS  PubMed  Google Scholar 

  • Schedel M, Trüper HG (1979) Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim Biophys Acta 568:454–467.

    CAS  PubMed  Google Scholar 

  • Schedel M, Vanselow M, Trüper HG (1979) Siroheme sulfite reductase from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch Microbiol 121:29–36.

    Article  CAS  Google Scholar 

  • Smith AJ, Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42:357–370.

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580.

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123.

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 19:26.

    Google Scholar 

  • Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H (2005) The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 187:5861–5867.

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG, Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 32:261–276.

    Article  Google Scholar 

  • Vermeglio A, Li J, Schoepp-Cothenet B, Pratt N, Knaff DB (2002) The role of high-potential iron protein and cytochrome c(8) as alternative electron donors to the reaction center of Chromatium vinosum. Biochemistry 41:8868–8875.

    Article  CAS  PubMed  Google Scholar 

  • Verté F, Kostanjevecki V, de Smet L, Meyer TE, Cusanovich MA, van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry 41:2932–2945.

    Article  PubMed  CAS  Google Scholar 

  • Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimm, F., Franz, B., Dahl, C. (2008). Thiosulfate and Sulfur Oxidation in Purple Sulfur Bacteria. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_9

Download citation

Publish with us

Policies and ethics