Skip to main content

Sulfonates and Organotrophic Sulfite Metabolism

  • Conference paper
Microbial Sulfur Metabolism

One is used to considering sulfite oxidation as part of a lithotrophic process (e.g. SorAB or Sox system), much of which involves neutral or ionic inorganic sulfur species on the outer surface of the cytoplasmic membrane. In contrast, the processes referred to in this chapter involve organic compounds, which (1) include a highly stable sulfonate substituent (C−SO3−), (2) are involved in the organotrophic growth of the organism and (3) much of whose metabolism takes place in the cytoplasm. Many phenomena are associated with this life-style. The sulfonate may be a natural product, e.g. taurine or sulfoquinovose, whose synthesis can involve sulfite, or a xenobiotic laundry detergent, but it is effectively always a charged species, so an uptake system is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham W-R, Strömpl C, Vancanneyt M, Bennasar A, Swings J, Lünsdorf H, Smit J, Moore ERB (2004) Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 54:1227–1234.

    Article  CAS  PubMed  Google Scholar 

  • Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350:627–628.

    Article  CAS  Google Scholar 

  • Brüggemann C, Denger K, Cook AM, Ruff J (2004) Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150:805–816.

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozaczuk M, Skorupska A (1998) Dihydropyoverdin-7-sulfonic acids–unusual bacterial metabolites. Nat Prod Lett 12:125–130.

    Google Scholar 

  • Coleman NV, Spain JC (2003) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69:6041–6046.

    Article  CAS  PubMed  Google Scholar 

  • Cook AM, Denger K (2002) Dissimilation of the C2 sulfonates. Arch Microbiol 179:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Cook AM, Denger K (2006) Metabolism of taurine in microorganisms: a primer in molecular diversity? Adv Exp Med Biol 583:3–13.

    Article  CAS  PubMed  Google Scholar 

  • Cook AM, Laue H, Junker F (1999) Microbial desulfonation. FEMS Microbiol Rev 22:399–419.

    Article  Google Scholar 

  • Cook AM, Denger K, Smits THM (2006) Dissimilation of C3-sulfonates. Arch Microbiol 185:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Demarçay H (1838) Ueber die Natur der Galle. Ann Pharm 27:270–291.

    Article  Google Scholar 

  • den Dooren de Jong LE (1926) Bijdrage tot de kennis van het mineralisatieproces. Nijgh & van Ditmar, Rotterdam.

    Google Scholar 

  • Denger K, Stackebrandt E, Cook AM (1999) Desulfonispora thiosulfatigenes gen. nov., sp. nov., a widespread, taurine-fermenting, thiosulfate-producing, anaerobic bacterium. Int J Syst Bacteriol 49:1599–1603.

    Article  CAS  PubMed  Google Scholar 

  • Denger K, Smits THM, Cook AM (2006a) Genome-enabled analysis of the utilization of taurine as sole source of carbon or nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology 152:3197–3206.

    Article  CAS  PubMed  Google Scholar 

  • Denger K, Smits THM, Cook AM (2006b) L-Cysteate sulfo-lyase, a widespread, pyridoxal 5d-phosphate-coupled desulfonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem J 394:657–664.

    Article  CAS  PubMed  Google Scholar 

  • Dominy JE Jr, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH (2006) Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation in eubacteria. J Bacteriol 188:5561–5569.

    Article  CAS  PubMed  Google Scholar 

  • Feigel BJ, Knackmuss H-J (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159:124–130.

    Article  CAS  PubMed  Google Scholar 

  • Gorzynska AK, Denger K, Cook AM, Smits THM (2006) Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T. Arch Microbiol 185:402–406.

    Article  CAS  PubMed  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate biosynthesizing enzymes. J Biol Chem 277:13421–13429.

    Article  CAS  PubMed  Google Scholar 

  • Hickford SJH, Küpper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 2004:1897–1899.

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163.

    CAS  PubMed  Google Scholar 

  • Jacobson JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511.

    Google Scholar 

  • Johnston JB, Murray K, Cain RB (1975) Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Van Leeuwenhoek 41:493–511.

    Article  CAS  PubMed  Google Scholar 

  • Junker F, Field JA, Bangerter F, Ramsteiner K, Kohler H-P, Joannou CL, Mason JR, Leisinger T, Cook AM (1994a) Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436.

    CAS  PubMed  Google Scholar 

  • Junker F, Leisinger T, Cook AM (1994b) 3-Sulphocatechol 2, 3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140:1713–1722.

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348.

    Article  CAS  PubMed  Google Scholar 

  • King JE, Jaouhari R, Quinn JP (1997) The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmental Acinetobacter isolate. Microbiology 143:2339–2343.

    Article  CAS  Google Scholar 

  • King JE, Quinn JP (1997) Metabolism of sulfoacetate by environmental Aureobacterium sp. and Comamonas acidovorans isolates. Microbiology 143:3907–3912.

    Article  CAS  Google Scholar 

  • Knepper TP, Berna JL (2003) Surfactants: properties, production, and environmental aspects. In: Knepper TP, Barceló D, de Voogt P (eds) Analysis and fate of surfactants in the aquatic environment. Elsevier, Amsterdam, pp 1–50.

    Google Scholar 

  • Kondo H, Ishimoto M (1972) Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem 72:487–489.

    CAS  PubMed  Google Scholar 

  • Laue H, Denger K, Cook AM (1997) Fermentation of cysteate by a sulfate-reducing bacterium. Arch Microbiol 168:210–214.

    Article  CAS  Google Scholar 

  • Lie TL, Leadbetter JR, Leadbetter ER (1998) Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol J 15:135–149.

    Article  CAS  Google Scholar 

  • Mayer J, Denger K, Smits THM, Hollemeyer K, Groth U, Cook AM (2006) N-Acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol 186:61–67.

    Article  CAS  PubMed  Google Scholar 

  • O’Neil MJ (2001) International nonproprietary names (INN) for radicals and groups proposed for pharmaceutical substances by the World Health Organization. In: The Merck index. Merck, Whitehorse Station.

    Google Scholar 

  • Ovenden SPB, Capon RJ (1999) Echinosulfonic acids A-C and echinosulfone A: novel bromoindole sulfonic acids and a sulfone from a southern Australian marine sponge, Echinodictyum. J Nat Prod 62:1246–1249.

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glöckner F-O, Lupas AN, Amann R, Klenk H-P (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbecher W, Kelly DP, Murrell JC (1999) Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol 172:387–392.

    Article  CAS  PubMed  Google Scholar 

  • Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM (2005) Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:737–747.

    Article  CAS  PubMed  Google Scholar 

  • Ruff J, Denger K, Cook AM (2003) Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285.

    Article  CAS  PubMed  Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276:3941–3946.

    Article  CAS  PubMed  Google Scholar 

  • Schleheck D, Knepper TP, Fischer K, Cook AM (2004) Mineralization of individual congeners of linear alkylbenzenesulfonate (LAS) by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70:4053–4063.

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589.

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann F, Gmelin L (1827) Einige neue Bestandtheile der Galle des Ochsen. Ann Phys Chem 9:326–337.

    Article  Google Scholar 

  • Vairavamurthy A, Zhou W, Eglinton T, Manowitz B (1994) Sulfonates: a new class of organic sulfur compounds in marine sediments. Geochim Cosmochim Acta 58:4681–4687.

    Article  CAS  Google Scholar 

  • Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528.

    Article  CAS  Google Scholar 

  • Weinitschke S, Denger K, Smits TMH, Hollemeyer K, Cook AM (2006) The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine. Microbiology 152:1179–1186.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein CL, Griffith OW (1988) Cysteinesulfonate and W-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways. J Biol Chem 263:3735–3743.

    CAS  PubMed  Google Scholar 

  • White RH (1984) Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:42–46.

    CAS  PubMed  Google Scholar 

  • White RH (1986) Intermediates in the biosynthesis of coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry 25:5304–5308.

    Article  CAS  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133:667–676.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cook, A.M., Smits, T.H.M., Denger, K. (2008). Sulfonates and Organotrophic Sulfite Metabolism. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_14

Download citation

Publish with us

Policies and ethics