Skip to main content

Comparison of Ensemble-Based Filters for a Simple Model of Ocean Thermohaline Circulation

  • Chapter
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications
  • 2233 Accesses

Abstract

The performance of ensemble-based filters such as Sequential Importance Resampling (SIR) method, Ensemble Kalman Filter (EnKF), and Maximum Entropy Filter (MEF) are compared when applied to an idealized model of ocean thermohaline circulation. The model is a stochastic partial differential equation that exhibits bimodal states and rapid transitions between them. The optimal filtering result against which the methods are tested is obtained by using the SIR filter with N=104 for which the method converges. The numerical results reveal advantages and disadvantages of each ensemble-based filter. SIR obtains the optimal result, but requires a large sample size, N⩾ 103. EnKF achieves its best result with relatively small sample size N=102, but this best result may not be the optimal solution. MEF with N=102 achieves the optimal results and potentially is a better tool for systems that exhibit abrupt state transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JL (2007) An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus 59A:210–224

    Google Scholar 

  • Arulampalam MS et al (2002) A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Bellman RE (1961) Adaptive control processes. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Burgers G et al (1998) Analysis scheme in the ensemble Kalman filter. Mon Wea Rev 126:1719–1724

    Article  Google Scholar 

  • Campillo F et al (1994) Algorithmes parallèles pour le filtrage non linèare et les èquations aux dèrivées partielles stochastiques. Bull Liaison Rech Info Auto 141:21–24

    Google Scholar 

  • Cessi P, Young WR (1992) Multiple equilibria in two-dimensional thermo-haline circulation. J Fluid Mech 241:291–309

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. John Wiley & Sons, New York

    Google Scholar 

  • Daum F (2005) Nonlinear filters: Beyond the Kalman filter. IEEE AES Magazine 20(8):57–69

    Google Scholar 

  • Doucet A et al (2001) Sequential Monte Carlo in practice. Springer-Verlag, New York

    Google Scholar 

  • Evensen G (1994a) Inverse methods and data assimilation in nonlinear ocean models. Physica D 77:108–129

    Article  Google Scholar 

  • Evensen G (1994b) Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Eyink GL (2005) Statistical hydrodynamics of the thermohaline circulation in a two-dimensional model. Tellus A 57:100–115

    Article  Google Scholar 

  • Eyink GL, Kim S (2006) A maximum entropy method for particle filtering. J Stat Phys 123(5):1071–1128

    Article  Google Scholar 

  • Eyink GL et al (2004) A mean field approximation in data assimilation for nonlinear dynamics. Physica D 195:347–368

    Article  Google Scholar 

  • Gilks WR, Berzuini C (2001) Following a moving target – Monte Carlo inference for dynamics Bayesian models. J R Stat Soc Ser B Stat Methodol 63(1):127–146

    Article  Google Scholar 

  • Gordon N et al (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc Radar Signal Process 140:107–113

    Article  Google Scholar 

  • Hannachi A, Neil AO (2001) Atmospheric multiple Equilibria and non-Gaussian behaviour in model simulations. Q J R Atmos Sci 127:939–958

    Google Scholar 

  • Jaynes ET (2003) Probability theory: The logic of science. Cambridge University Press, Cambridge

    Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York

    Google Scholar 

  • Kim S (2005) Ensemble filtering methods for nonlinear dynamics. Dissertation. University of Arizona

    Google Scholar 

  • Kim S, Eyink GL (2008) Predicting rapid climate changes. In preparation

    Google Scholar 

  • Kim S et al (2003) Ensemble filtering for nonlinear dynamics. Mon Wea Rev 131:2586–2594

    Article  Google Scholar 

  • Kitagawa G, Gersch W (1996) Smoothness priors analysis of time series, volume 116 of Lecture Notes in Statistics. Springer-Verlag, New York

    Google Scholar 

  • Kushner HJ (1962) On the differential equations satisfied by conditional probability densities of Markov processes, with applications. J SIAM Control Ser A 2:106–119

    Google Scholar 

  • Kushner HJ (1967) Approximation to optimal nonlinear filters. IEEE Trans Auto Contr 12:546–556

    Article  Google Scholar 

  • Van Leeuwen PJ (2003) A variance-minimizing filter for large-scale application. Mon Wea Rev 131:2071–2084

    Article  Google Scholar 

  • Lorenc QC, Hammon O (1988) Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Q J R Meteorol Soc 114:515–543

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Mead L, Papanicolaou N (1984) Maximum entropy in the problem of moments. J Math Phys 25:2404–2417

    Article  Google Scholar 

  • Miller RN et al (1994) Advanced data assimilation in strongly nonlinear dynamical systems. J Atmos Sci 51:1037–1056

    Article  Google Scholar 

  • Miller RN et al. (1999) Data assimilation into nonlinear stochastic models. Tellus 51A:167–194

    Google Scholar 

  • Del Moral P (1996) Nonlinear filtering: Interacting particle solution. Markov Proc Rel Fields 2:555–579

    Google Scholar 

  • Namias J (1950) The index cycle and its role in the general circulation. J Meteorl 7:130–139

    Google Scholar 

  • Rahmstorf S (1995) Bifurcation of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149

    Article  Google Scholar 

  • Rahmstorf S (2003) The thermohaline circulation: The current climate. Nature 421:699

    Article  Google Scholar 

  • Rex D (1950) Blocking action in the middle troposphere and its effect upon regional climate. Tellus 2:196–211

    Google Scholar 

  • Smyth P et al (1999) Multiple regimes in northern hemisphere height fields via mixture model clustering. J Atmos Sci 56:3704–3723

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Article  Google Scholar 

  • Stratonovich RL (1960) Conditional Markov processes. Theor Prob Appl 5:156–178

    Article  Google Scholar 

  • Thual O, McWilliams JC (1992) The catastrophe structure of thermohaline convection in a two dimensional fluid model and a comparison with low-order box model. Geophys Astrophys Fluid Dyn 64:67–95

    Article  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, S. (2009). Comparison of Ensemble-Based Filters for a Simple Model of Ocean Thermohaline Circulation. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_15

Download citation

Publish with us

Policies and ethics