Skip to main content

A Connectionist Perspective on Attentional Effects in Neurodynamics Data

  • Chapter
From Attention to Goal-Directed Behavior
  • 612 Accesses

The aim of this chapter is to show how the validity of neuropsychological models of attention can be explicitly tested using advanced techniques for the analysis of event-related activity in electroencephalography (EEG) and magnetoencephalog-raphy (MEG). These techniques are based on biophysical models of EEG/MEG which afford a neurobiological perspective on event-related-potential (ERP) research and on cognitive neuroscience in general. In particular, they allow one to reinterpret neurodynamical effects of attention in terms of context-dependent changes in neuro-nal couplings between remote regions embedded in a global network of attention. First, we present the nodes of the network hypothesized and what the relationships are between attention, synchronization, neural coupling, and ERPs. Second, we describe briefly the mathematical details of a recent modeling approach (dynamic causal modeling) to estimate neural couplings from ERPs. Finally, we will show how dynamic causal modeling for ERPs can be used to compare different neuropsycho-logical models using two examples: the mismatch negativity in auditory oddball paradigms and the activation of the ventral visual pathway by emotional attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAS:

Anterior affective system

DCM:

Dynamic causal modeling

EEG:

Electroencephalography

ERF:

Event-related field

ERP:

Event-related potential

fMRI:

Functional magnetic resonance imaging

MMN:

Mismatch negativity

OFC:

Orbitofrontal cortex

STG:

Superior temporal gyrus

References

  • Anderson, A. K. (2005). Affective influences on the attentional dynamics supporting awareness.Journal of Experimental Psychology. General 134, 258–281

    Article  PubMed  Google Scholar 

  • Baillet, S., Mosher, J. C.,&Leahy, R. M. (2001). Electromagnetic brain mapping.IEEE Signal Processing Magazine 18(6), 14–30

    Article  Google Scholar 

  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L.,&Zhou, C. S. (2002). The synchronization of chaotic systems.Physics Reports 366, 1–101

    Article  CAS  Google Scholar 

  • Brovelli, A., Lachaux, J. P., Kahane, P.,&Boussaoud, D. (2005). High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex.Neuroimage 28, 154–164

    Article  PubMed  Google Scholar 

  • Coles, M. G. H.&Rugg, M. D. (1995). Event-related brain potentials: An introduction. In M. D. Rugg&M. G. H. Coles (Eds.)Electrophysiology of mind(pp. 1–26). Oxford: Oxford University Press

    Google Scholar 

  • Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology.Progress In Neurobiology 55, 343–361

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.&Koch, C. (1998). Constraints on cortical and thalamic projections: The no-strong-loops hypothesis.Nature 391, 245–250

    Article  PubMed  CAS  Google Scholar 

  • David, O., Cosmelli, D.,&Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model.Neuroimage 21, 659–673

    Article  PubMed  Google Scholar 

  • David, O.&Friston, K. J. (2003). A neural mass model for MEG/EEG: Coupling and neuronal dynamics.Neuroimage 20, 1743–1755

    Article  PubMed  Google Scholar 

  • David, O., Harrison, L.,&Friston, K. J. (2005). Modelling event-related responses in the brain.Neuroimage 25, 756–770

    Article  PubMed  Google Scholar 

  • David, O., Harrison, L.,&Friston, K. J. (2007). Neuronal models of EEG and MEG. In K. J. Friston, J. T. Ashburner, S. J. Kiebel, T. E. Nichols,&W. D. Penny (Eds.)Statistical parametric mapping: The analysis of functional brain images(1 ed., pp. 414–440). London: Elsevier

    Google Scholar 

  • David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M.,&Friston, K. J. (2006). Dynamic causal modeling of evoked responses in EEG and MEG.Neuroimage 30, 1255–1272

    Article  PubMed  Google Scholar 

  • David, O., Kilner, J. M.,&Friston, K. J. (2006). Mechanisms of evoked and induced responses in MEG/EEG.Neuroimage 31, 1580–1591

    Article  PubMed  Google Scholar 

  • Engel, A. K., Fries, P.,&Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing.Nature Reviews Neuroscience 2, 704–716

    Article  PubMed  CAS  Google Scholar 

  • Felleman, D. J.,&Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex.CerebralCortex 1, 1–47

    CAS  Google Scholar 

  • Freeman, W. J. (1978). Models of the dynamics of neural populations.Electroencephalographyan d Clinical Neurophysiology [Suppl] 34, 9–18

    Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence.Trends in Cognitive Science 9, 474–480

    Article  Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain.Neural Networks 16, 1325–1352

    Article  PubMed  Google Scholar 

  • Friston, K. J. (2001). Brain function, nonlinear coupling, and neuronal transients.Neuroscientist 7, 406–418

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J., Harrison, L.,&Penny, W. (2003). Dynamic causal modelling.Neuroimage 19, 1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J., Penny, W., Phillips, C., Kiebel, S., Hinton, G.,&Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: Theory.Neuroimage 16, 465–483

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, S. P., Heeger, D. J.,&Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex.Proceedings of the National Academy of Sciences of the United States of America 96, 3314–3319

    Article  PubMed  CAS  Google Scholar 

  • Garrido, M. I., Kilner, J. M., Kiebel, S. J.,&Friston, K. J. (2007a). Evoked brain responses are generated by feedback loops.Proceedings of the National Academy of Sciences of the United States of America 104, 20961–20966

    Article  CAS  Google Scholar 

  • Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E.,&Friston, K. J. (2007b). Dynamic causal modelling of evoked potentials: A reproducibility study.Neuroimage 36, 571–580

    Article  Google Scholar 

  • Hillyard, S. A.&Kutas, M. (1983). Electrophysiology of cognitive processing.Annual Review of Psychology 34, 33–61

    Article  PubMed  CAS  Google Scholar 

  • Jansen, B. H.&Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns.Biological Cybernetics 73, 357–366

    Article  PubMed  CAS  Google Scholar 

  • Kastner, S.&Pinsk, M. A. (2004). Visual attention as a multilevel selection process.Cognitive, Affective and Behavioral Neuroscience 4, 483–500

    Article  Google Scholar 

  • Kiebel, S. J., David, O.,&Friston, K. J. (2006). Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization.Neuroimage 30, 1273–1284

    Article  PubMed  Google Scholar 

  • Kiebel, S. J., Garrido, M. I.,&Friston, K. J. (2007). Dynamic causal modelling of evoked responses: The role of intrinsic connections.Neuroimage 36332–345

    Article  PubMed  Google Scholar 

  • Lopes da Silva, F. H., Hoeks, A., Smits, H.,&Zetterberg, L. H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus.Kybernetik 15, 27–37

    Article  Google Scholar 

  • Mangun, G. R.&Hillyard, S. A. (1995). Mechanisms and models of selective attention. In M. D. Rugg&M. G. H. Coles (Eds.)Electrophysiology of mind: Event-related brain potentials and cognition(pp. 40–85). Oxford: Oxford University Press

    Google Scholar 

  • Martinez, A., DiRusso, F., nllo-Vento, L., Sereno, M. I., Buxton, R. B.,&Hillyard, S. A. (2001). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas.Vision Research 41, 1437–1457

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect.Annals of Neurology 10, 309–325

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events.Philosophical Transactions of Royal Society of London – Series B: Biological Science 354, 1325–1346

    Article  CAS  Google Scholar 

  • Moran, R. J., Kiebel, S. J., Stephan, K. E., Reilly, R. B., Daunizeau, J.,&Friston, K. J. (2007). A neural mass model of spectral responses in electrophysiology.Neuroimage 37, 706–720

    Article  PubMed  CAS  Google Scholar 

  • Mosher, J. C., Leahy, R. M.,&Lewis, P. S. (1999). EEG and MEG: Forward solutions for inverse methods.IEEE Transaction on Biomedical Engineering 46, 245–259

    Article  CAS  Google Scholar 

  • Naatanen, R., Paavilainen, P., Rinne, T.,&Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review.Clinical Neurophysiology 118, 2544–2590

    Article  PubMed  CAS  Google Scholar 

  • Pashler, H. E. (1998).The psychology of attention. Cambridge, MA: MIT

    Google Scholar 

  • Penny, W. D., Stephan, K. E., Mechelli, A.,&Friston, K. J. (2004). Comparing dynamic causal models.Neuroimage 22, 1157–1172

    Article  PubMed  CAS  Google Scholar 

  • Posner, M. I.&Gilbert, C. D. (1999). Attention and primary visual cortex.Proceedings of the National Academy of Sciences of the United States of America 96, 2585–2587

    Article  PubMed  CAS  Google Scholar 

  • Posner, M. I.&Petersen, S. E. (1990). The attention system of the human brain.Annual Review of Neurosciences 13, 25–42

    Article  CAS  Google Scholar 

  • Posner, M. I., Sheese, B. E., Odludas, Y.,&Tang, Y. (2006). Analyzing and shaping human attentional networks.Neural Networks 19, 1422–1429

    Article  PubMed  Google Scholar 

  • Rennie, C. J., Robinson, P. A.,&Wright, J. J. (2002). Unified neurophysical model of EEG spectra and evoked potentials.Biological Cybernetics 86, 457–471

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., Wright, J. J., Bahramali, H., Gordon, E.,&Rowe, D. L. (2001). Prediction of electroencephalographic spectra from neurophysiology.Physics Review E 63, 021903

    Article  CAS  Google Scholar 

  • Rose, M., Sommer, T.,&Buchel, C. (2006). Integration of local features to a global percept by neural coupling.Cerebral Cortex, 16, 1522–1528

    Article  PubMed  Google Scholar 

  • Rudrauf, D., David, O., Lachaux, J.-P., Martinerie, J., Renault, B., Kovach, C. et al. (2008). Rapid interactions between ventral visual stream and emotion-related structures rely on a two-pathway architecture.Journal of Neuroscience 28, 2793–2803

    Article  PubMed  CAS  Google Scholar 

  • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem.Physics in Medicine and Biology 32, 11–22

    Article  PubMed  CAS  Google Scholar 

  • Somers, D. C., Dale, A. M., Seiffert, A. E.,&Tootell, R. B. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex.Proceedings of the National Academy of Sciences of the United States of America 96, 1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Stam, C. J., Pijn, J. P., Suffczynski, P.,&Lopes da Silva, F. H. (1999). Dynamics of the human alpha rhythm: Evidence for non-linearity?Clinical Neurophysiology 110, 1801–1813

    Article  PubMed  CAS  Google Scholar 

  • Streit, M., Dammers, J., Simsek-Kraues, S., Brinkmeyer, J., Wolwer, W.,&Ioannides, A. (2003). Time course of regional brain activations during facial emotion recognition in humans.Neuroscience Letters 342, 101–104

    Article  PubMed  CAS  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J.,&Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus.Cerebral Cortex 15, 654–662

    Article  PubMed  Google Scholar 

  • Taylor, K., Mandon, S., Freiwald, W. A.,&Kreiter, A. K. (2005). Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention.Cerebral Cortex 15, 1424–1437

    Article  PubMed  CAS  Google Scholar 

  • Valdes, P. A., Jimenez, J. C., Riera, J., Biscay, R.,&Ozaki, T. (1999). Nonlinear EEG analysis based on a neural mass model.Biological Cybernetics 81, 415–424

    Article  PubMed  CAS  Google Scholar 

  • Van Rotterdam, A., Lopes da Silva, F. H., van den, E. J., Viergever, M. A.,&Hermans, A. J. (1982). A model of the spatial-temporal characteristics of the alpha rhythm.Bulletin of Mathematical Biology 44, 283–305

    Article  PubMed  Google Scholar 

  • Varela, F., Lachaux, J.-P., Rodriguez, E.,&Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration.Nature Reviews Neuroscience 2, 229–239

    Article  PubMed  CAS  Google Scholar 

  • Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention.Trends in Cognitive Science 9, 585–594

    Article  Google Scholar 

  • Wager, T. D., Jonides, J.,&Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis.Neuroimage 22, 1679–1693

    Article  PubMed  Google Scholar 

  • Wendling, F., Bellanger, J. J., Bartolomei, F.,&Chauvel, P. (2000). Relevance of nonlinear lumped-parameter models in the analysis of depth- EEG epileptic signals.Biological Cybernetics 83, 367–378

    Article  PubMed  CAS  Google Scholar 

  • Womelsdorf, T.&Fries, P. (2007). The role of neuronal synchronization in selective attention.Current Opinion in Neurobiology 17, 154–160

    Article  PubMed  CAS  Google Scholar 

  • Womelsdorf, T., Fries, P., Mitra, P. P.,&Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection.Nature 439, 733–736

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

David, O. (2009). A Connectionist Perspective on Attentional Effects in Neurodynamics Data. In: Aboitiz, F., Cosmelli, D. (eds) From Attention to Goal-Directed Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70573-4_8

Download citation

Publish with us

Policies and ethics