Skip to main content

Crossmodal Attention–The Contribution of Event-Related-Potential Studies

  • Chapter
From Attention to Goal-Directed Behavior
  • 642 Accesses

In everyday experience we are exposed to complex stimuli that impact sensorial receptors in more than one sensory modality. For example, human social interactions through language necessarily imply integration of auditory information with visual information referring to facial expression and gesture. In such a context, selective attention seems to operate favoring some of those stimuli on the basis of preexisting contextual information and physical or psychological salience, among other criteria. Although most studies of attentional mechanisms are still conducted using stimulation of a single sensory modality, which allows simpler hypothesis testing and minimizes confounding factors, in the last decade we have witnessed great developments in the study of so-called crossmodal attention. Evidence has accrued that both conflicting and congruent information presented to different sensory modalities interferes or influences the processing at each modality at different levels. Behavioral and electrophysiological studies support the existence of early crossmodal integration between almost all sensory modalities and stable crossmodal plasticity as a long-term effect. In this context, event-related potentials have been extensively used, especially owing to some advantages that this technique offers for the study of attentional mechanisms, such as its high temporal resolution. Attentional modulation of event-related potentials elicited by crossmodal stimuli partially resembles what has been described using monomodal stimulation. For example, an early negativity named “Nd” increases its amplitude when the eliciting stimulus is attended. In the present chapter, we attempt to revise the most recent developments in this cutting-edge research area and their implications for the theoretical framework in which we understand attention and attentional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsius, A., Navarra, J., Campbell, R., & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. Current Biology, 15(9), 839–843

    Article  PubMed  CAS  Google Scholar 

  • Alsius, A., Navarra, J., & Soto-Faraco, S. (2007). Attention to touch weakens audiovisual speech integration. Experimental Brain Research, 183(3), 399–404

    Article  Google Scholar 

  • Aschersleben, G., & Bertelson, P. (2003). Temporal ventriloquism: Crossmodal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. International Journal of Psychophysiology, 50(1–2), 157–163

    Article  PubMed  Google Scholar 

  • Barraclough, N. E., Xiao, D., Baker, C. I., Oram, M. W., & Perrett, D. I. (2005). Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. Journal of Cognitive Neuroscience, 17(3), 377–391

    Article  PubMed  Google Scholar 

  • Bernstein, L. E., Auer, E. T., Jr., Wagner, M., & Ponton, C. W. (2008). Spatiotemporal dynamics of audiovisual speech processing. Neuroimage, 39(1), 423–435

    Article  PubMed  Google Scholar 

  • Bertelson, P., & Aschersleben, G. (2003). Temporal ventriloquism: Crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. International Journal of Psychophysiology, 50(1–2), 147–155

    Article  PubMed  Google Scholar 

  • Bertelson, P., Vroomen, J., de Gelder, B., & Driver, J. (2000). The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception and Psychophysics, 62(2), 321–332

    PubMed  CAS  Google Scholar 

  • Bizley, J. K., Nodal, F. R., Bajo, V. M., Nelken, I., & King, A. J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cerebral Cortex, 17(9), 2172–2189

    Article  PubMed  Google Scholar 

  • Bonath, B., Noesselt, T., Martinez, A., Mishra, J., Schwiecker, K., Heinze, H. J., et al. (2007). Neural basis of the ventriloquist illusion. Current Biology, 17(19), 1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Budinger, E., Heil, P., Hess, A., & Scheich, H. (2006). Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience, 143(4), 1065–1083

    Article  PubMed  CAS  Google Scholar 

  • Bushara, K. O., Grafman, J., & Hallett, M. (2001). Neural correlates of auditory-visual stimulus onset asynchrony detection. Journal of Neuroscience, 21(1), 300–304

    PubMed  CAS  Google Scholar 

  • Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18751–18756

    Article  PubMed  CAS  Google Scholar 

  • Calvert, G. A. (2001). Crossmodal processing in the human brain: Insights from functional neuroimaging studies. Cerebral Cortex, 11(12), 1110–1123

    Article  PubMed  CAS  Google Scholar 

  • Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C., McGuire, P. K., et al. (1997). Activation of auditory cortex during silent lipreading. Science, 276(5312), 593–596

    Article  PubMed  CAS  Google Scholar 

  • Calvert, G. A., Hansen, P. C., Iversen, S. D., & Brammer, M. J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage, 14(2), 427–438

    Article  PubMed  CAS  Google Scholar 

  • Cappe, C., & Barone, P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. European Journal of Neuroscience, 22(11), 2886–2902

    Article  PubMed  Google Scholar 

  • Colavita, F. B., & Weisberg, D. (1979). A further investigation of visual dominance. Perception and Psychophysics, 25(4), 345–347

    PubMed  CAS  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215

    Article  PubMed  CAS  Google Scholar 

  • De Gelder, B., & Bertelson, P. (2003). Multisensory integration, perception and ecological validity. Trends in Cognitive Science, 7(10), 460–467

    Article  Google Scholar 

  • Dematte, M. L., Osterbauer, R., & Spence, C. (2007). Olfactory cues modulate facial attractiveness. Chemical Senses, 32(6), 603–610

    Article  PubMed  Google Scholar 

  • Doyle, M. C., & Snowden, R. J. (2001). Identification of visual stimuli is improved by accompanying auditory stimuli: The role of eye movements and sound location. Perception, 30(7), 795–810

    Article  PubMed  CAS  Google Scholar 

  • Driver, J. (1996). Enhancement of selective listening by illusory mislocation of speech sounds due to lip-reading. Nature, 381(6577), 66–68

    Article  PubMed  CAS  Google Scholar 

  • Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron, 57(1), 11–23

    Article  PubMed  CAS  Google Scholar 

  • Driver, J., & Spence, C. (1998). Crossmodal attention. Current Opinion in Neurobiology, 8(2), 245–253

    Article  PubMed  CAS  Google Scholar 

  • Eimer, M. (2004). Multisensory integration: How visual experience shapes spatial perception. Current Biology, 14(3), R115–117

    PubMed  CAS  Google Scholar 

  • Eimer, M., & Driver, J. (2000). An event-related brain potential study of cross-modal links in spatial attention between vision and touch. Psychophysiology, 37(5), 697–705

    Article  PubMed  CAS  Google Scholar 

  • Eimer, M., & Driver, J. (2001). Crossmodal links in endogenous and exogenous spatial attention: Evidence from event-related brain potential studies. Neuroscience Biobehavioral Review, 25(6), 497–511

    Article  CAS  Google Scholar 

  • Eimer, M., & Van Velzen, J. (2002). Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology, 39(4), 437–449

    Article  PubMed  Google Scholar 

  • Eimer, M., van Velzen, J., & Driver, J. (2002). Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. Journal of Cognitive Neuroscience, 14(2), 254–271

    Article  PubMed  Google Scholar 

  • Eimer, M., van Velzen, J., & Driver, J. (2004). ERP evidence for cross-modal audiovisual effects of endogenous spatial attention within hemifields. Journal of Cognitive Neuroscience, 16(2), 272–288

    Article  PubMed  Google Scholar 

  • Eimer, M., van Velzen, J., Forster, B., & Driver, J. (2003). Shifts of attention in light and in darkness: An ERP study of supramodal attentional control and crossmodal links in spatial attention. Brain Research. Cognitive Brain Research, 15(3), 308–323

    Article  PubMed  Google Scholar 

  • Escera, C., Yago, E., Corral, M. J., Corbera, S., & Nunez, M. I. (2003). Attention capture by auditory significant stimuli: Semantic analysis follows attention switching. European Journal of Neuroscience, 18(8), 2408–2412

    Article  PubMed  Google Scholar 

  • Falchier, A., Clavagnier, S., Barone, P., & Kennedy, H. (2002). Anatomical evidence of multimo- dal integration in primate striate cortex. Journal of Neuroscience, 22(13), 5749–5759

    PubMed  CAS  Google Scholar 

  • Fort, A., Delpuech, C., Pernier, J., & Giard, M. H. (2002). Dynamics of cortico-subcortical cross- modal operations involved in audio-visual object detection in humans. Cerebral Cortex, 12(10), 1031–1039

    Article  PubMed  Google Scholar 

  • Foxe, J. J., & Schroeder, C. E. (2005). The case for feedforward multisensory convergence during early cortical processing. Neuroreport, 16(5), 419–423

    Article  PubMed  Google Scholar 

  • Foxe, J. J., Wylie, G. R., Martinez, A., Schroeder, C. E., Javitt, D. C., Guilfoyle, D., et al. (2002). Auditory-somatosensory multisensory processing in auditory association cortex: An fMRI study. Journal of Neurophysiology, 88(1), 540–543

    PubMed  Google Scholar 

  • Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience: The biology of the mind (2nd ed.). New York: Norton

    Google Scholar 

  • Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Science, 10(6), 278–285

    Article  Google Scholar 

  • Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473–490

    Article  PubMed  CAS  Google Scholar 

  • Guest, S., Catmur, C., Lloyd, D., & Spence, C. (2002). Audiotactile interactions in roughness perception. Experimental Brain Research, 146(2), 161–171

    Article  Google Scholar 

  • Hackett, T. A., De La Mothe, L. A., Ulbert, I., Karmos, G., Smiley, J., & Schroeder, C. E. (2007). Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. The Journal of Comparative Neurology, 502(6), 924–952

    Article  PubMed  Google Scholar 

  • Harter, M. R., & Anllo-Vento, L. (1991). Visual-spatial attention: Preparation and selection in children and adults. Electroencephalography and Clinical Neurophysiology Supplement, 42, 183–194

    PubMed  CAS  Google Scholar 

  • Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience Biobehavior Review, 25(6), 465–476

    Article  CAS  Google Scholar 

  • Kayser, C., & Logothetis, N. K. (2007). Do early sensory cortices integrate cross-modal information? Brain Structure and Function, 212(2), 121–132

    Article  PubMed  Google Scholar 

  • Kayser, C., Petkov, C. I., & Logothetis, N. K. (2008). Visual Modulation of Neurons in Auditory Cortex. Cerebral Cortex, 18(7), 1560–1574

    Article  PubMed  Google Scholar 

  • Koppen, C., & Spence, C. (2007). Audiovisual asynchrony modulates the Colavita visual dominance effect. Brain Research, 1186, 224–232

    Article  PubMed  CAS  Google Scholar 

  • Lakatos, P., Chen, C. M., O'Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292

    Article  PubMed  CAS  Google Scholar 

  • Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Science, 4(11), 432–440

    Article  Google Scholar 

  • Macaluso, E. (2006). Multisensory processing in sensory-specific cortical areas. Neuroscientist,12(4), 327–338

    Article  PubMed  Google Scholar 

  • Macaluso, E., Eimer, M., Frith, C. D., & Driver, J. (2003). Preparatory states in crossmodal spatial attention: Spatial specificity and possible control mechanisms. Experimental Brain Research, 149(1), 62–74

    CAS  Google Scholar 

  • Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289(5482), 1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: A PET study. Neuroimage, 21(2), 725–732

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. J., Teder-Salejarvi, W. A., Di Russo, F., & Hillyard, S. A. (2003). Neural substrates of perceptual enhancement by cross-modal spatial attention. Journal of Cognitive Neuroscience, 15(1), 10–19

    Article  PubMed  Google Scholar 

  • McDonald, J. J., Teder-Salejarvi, W. A., & Hillyard, S. A. (2000). Involuntary orienting to sound improves visual perception. Nature, 407(6806), 906–908

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. J., Teder-Salejarvi, W. A., & Ward, L. M. (2001). Multisensory integration and crossmodal attention effects in the human brain. Science, 292(5523), 1791

    Article  PubMed  CAS  Google Scholar 

  • McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247–279

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. (1991). Channel interaction and the redundant-targets effect in bimodal divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 160–169

    Article  PubMed  CAS  Google Scholar 

  • Mishra, J., Martinez, A., Sejnowski, T. J., & Hillyard, S. A. (2007). Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27(15), 4120–4131

    Article  PubMed  CAS  Google Scholar 

  • Molholm, S., Martinez, A., Shpaner, M., & Foxe, J. J. (2007). Object-based attention is multisen- sory: co-activation of an object's representations in ignored sensory modalities. European Journal of Neuroscience, 26(2), 499–509

    Article  PubMed  Google Scholar 

  • Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory-visual interactions during early sensory processing in humans: a high- density electrical mapping study. Brain Research. Cognitive Brain Research, 14(1), 115–128

    Article  PubMed  Google Scholar 

  • Pekkola, J., Ojanen, V., Autti, T., Jaaskelainen, I. P., Mottonen, R., & Sams, M. (2006). Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale. Human Brain Mapping, 27(6), 471–477

    Article  PubMed  Google Scholar 

  • Populin, L. C., & Yin, T. C. (2002). Bimodal interactions in the superior colliculus of the behaving cat. J Neurosci, 22(7), 2826–2834

    PubMed  CAS  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quartely Journal of Experimental Psychology, 32(1), 3–25

    Article  CAS  Google Scholar 

  • Posner, M. I., & Dehaene, S. (2000). Attentional networks. In M. S. Gazzaniga (Ed.), Cognitive neuroscience a reader (pp. 156–164). Oxford: Blackwell Publishers Ltd

    Google Scholar 

  • Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience, 18(6), 2188–2199

    PubMed  CAS  Google Scholar 

  • Raab, D. H. (1962). Statistical facilitation of simple reaction times. Transaction of New York Academy of Science, 24, 574–590

    CAS  Google Scholar 

  • Rockland, K. S., & Ojima, H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey. International Journal of Psychophysiology, 50(1–2), 19–26

    Article  PubMed  Google Scholar 

  • Rouger, J., Fraysse, B., Deguine, O., & Barone, P. (2008). McGurk effects in cochlear-implanted deaf subjects. Brain Research, 1188, 87–99

    Article  PubMed  CAS  Google Scholar 

  • Saint-Amour, D., De Sanctis, P., Molholm, S., Ritter, W., & Foxe, J. J. (2007). Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia, 45(3), 587–597

    Article  PubMed  Google Scholar 

  • Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1–2), 1–46

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, C. E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F., & Javitt, D. C. (2001). Somatosensory input to auditory association cortex in the macaque monkey. Journal of Neurophysiology, 85(3), 1322–1327

    PubMed  CAS  Google Scholar 

  • Schroger, E., & Widmann, A. (1998). Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology, 35(6), 755–759

    Article  PubMed  CAS  Google Scholar 

  • Sekuler, R., Sekuler, A. B., & Lau, R. (1997). Sound alters visual motion perception. Nature, 385(6614), 308

    Article  PubMed  CAS  Google Scholar 

  • Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions. What you see is what you hear. Nature, 408(6814), 788

    Article  PubMed  CAS  Google Scholar 

  • Shams, L., Kamitani, Y., & Shimojo, S. (2002). Visual illusion induced by sound. Brain Research.Cognitive Brain Research, 14(1), 147–152

    Article  PubMed  Google Scholar 

  • Shimojo, S., & Shams, L. (2001). Sensory modalities are not separate modalities: Plasticity and interactions. Current Opinion in Neurobiology, 11(4), 505–509

    Article  PubMed  CAS  Google Scholar 

  • Small, D. M., & Prescott, J. (2005). Odor/taste integration and the perception of flavor. Experimental Brain Research, 166(3–4), 345–357

    Article  Google Scholar 

  • Soto-Faraco, S., Lyons, J., Gazzaniga, M., Spence, C., & Kingstone, A. (2002). The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Brain Research. Cognitive Brain Research, 14(1), 139–146

    Article  PubMed  Google Scholar 

  • Spence, C., & Driver, J. (2000). Attracting attention to the illusory location of a sound: Reflexive crossmodal orienting and ventriloquism. Neuroreport, 11(9), 2057–2061

    Article  PubMed  CAS  Google Scholar 

  • Stanford, T. R., & Stein, B. E. (2007). Superadditivity in multisensory integration: Putting the computation in context. Neuroreport, 18(8), 787–792

    Article  PubMed  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–661

    Article  Google Scholar 

  • Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Naatanen, R. (2002). Top-down effects can modify the initially stimulus-driven auditory organization. Brain Research. Cognitive Brain Research, 13(3), 393–405

    Article  PubMed  Google Scholar 

  • Sussman, E., Winkler, I., & Schroger, E. (2003). Top-down control over involuntary attention switching in the auditory modality. Psychonomic Bulletin and Review, 10(3), 630–637

    PubMed  CAS  Google Scholar 

  • Talsma, D., Doty, T. J., & Woldorff, M. G. (2007). Selective attention and audiovisual integration: Is attending to both modalities a prerequisite for early integration? Cerebral Cortex, 17(3), 679–690

    Article  PubMed  Google Scholar 

  • Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. The Journal of Cognitive Neuroscience, 17(7), 1098–1114

    Article  Google Scholar 

  • Teder-Salejarvi, W. A., Di Russo, F., McDonald, J. J., & Hillyard, S. A. (2005). Effects of spatial congruity on audio-visual multimodal integration. The Journal of Cognitive Neuroscience, 17(9), 1396–1409

    Article  CAS  Google Scholar 

  • Teder-Salejarvi, W. A., McDonald, J. J., Di Russo, F., & Hillyard, S. A. (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Brain Research. Cognitive Brain Research, 14(1), 106–114

    Article  PubMed  CAS  Google Scholar 

  • Teder-Salejarvi, W. A., Munte, T. F., Sperlich, F., & Hillyard, S. A. (1999). Intra-modal and cross- modal spatial attention to auditory and visual stimuli. An event-related brain potential study. Brain Research. Cognitive Brain Research, 8(3), 327–343

    Article  PubMed  CAS  Google Scholar 

  • van Atteveldt, N. M., Formisano, E., Goebel, R., & Blomert, L. (2007). Top-down task effects overrule automatic multisensory responses to letter-sound pairs in auditory association cortex. Neuroimage, 36(4), 1345–1360

    Article  PubMed  Google Scholar 

  • Vroomen, J., Bertelson, P., & de Gelder, B. (2001). The ventriloquist effect does not depend on the direction of automatic visual attention. Perception and Psychophysics, 63(4), 651–659

    PubMed  CAS  Google Scholar 

  • Vroomen, J., & de Gelder, B. (2000). Sound enhances visual perception: Cross-modal effects of auditory organization on vision. Journal of Experimental Psychology: Human Perception and Performance, 26(5), 1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Walla, P. (2008). Olfaction and its dynamic influence on word and face processing: Cross-modal integration. Progess in Neurobiology, 84(2), 192–209

    Article  Google Scholar 

  • Watanabe, K., & Shimojo, S. (1998). Attentional modulation in perception of visual motion events. Perception, 27(9), 1041–1054

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., & Shimojo, S. (2001). When sound affects vision: Effects of auditory grouping on visual motion perception. Psychology Science, 12(2), 109–116

    Article  CAS  Google Scholar 

  • White, T. L., & Prescott, J. (2007). Chemosensory cross-modal stroop effects: Congruent odors facilitate taste identification. Chemical Senses, 32(4), 337–341

    Article  PubMed  Google Scholar 

  • Zampini, M., Torresan, D., Spence, C., & Murray, M. M. (2007). Auditory-somatosensory multi- sensory interactions in front and rear space. Neuropsychologia, 45(8), 1869–1877

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortega, R., López, V. (2009). Crossmodal Attention–The Contribution of Event-Related-Potential Studies. In: Aboitiz, F., Cosmelli, D. (eds) From Attention to Goal-Directed Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70573-4_6

Download citation

Publish with us

Policies and ethics