Skip to main content

Gabor Analysis and Algorithms

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics

Mathematics Subject Classification

Primary 42C15; 42B35

Footnote 1 Footnote 2

Keywords and Phrases

Gabor frames; Janssen representation; Time-frequency analysis

Motivation

Abstract harmonic analysis explains how to describe the (global) Fourier transform (FT) of signals even over general LCA (locally compact Abelian) groups but typically requires square integrability or periodicity. For the analysis of time-variant signals, an alternative is needed, the so-called sliding window FT or the STFT, the short-time Fourier transform, defined over phase space, the Cartesian, and the product of the time domain with the frequency domain. Starting from a signal f it is obtained by first localizing f in time using a (typically bump-like) window function g followed by a Fourier analysis of the localized part [1]. Another important application of time-frequency analysis is in wireless communication where it helps to design reliable mobile communication systems.

This article presents the key ideas of

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FL was supported by an APART fellowship of the Austrian Academy of Sciences.

  2. 2.

    HGFei was active as a member of the UnlocX EU network when writing this note.

References

  1. Allen, J.B., Rabiner, L.R.: A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE 65(11), 1558–1564 (1977)

    Article  Google Scholar 

  2. Benedetto, J.J., Heil, C., Walnut, D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1(4), 355–402 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetto, J., Benedetto, R., Woodworth, J.: Optimal ambiguity functions and Weil’s exponential sum bound. J. Fourier Anal. Appl. 18(3), 471–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bölcskei, H., Hlawatsch, F.: Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans. Circuits Syst. II 45(8), 1057–1071 (1998)

    Article  MATH  Google Scholar 

  5. Casazza, P.G., Tremain, J.C.: The Kadison-Singer problem in mathematics and engineering. Proc. Nat. Acad. Sci. 103, 2032–2039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies, I., Landau, H.J., Landau, Z.: Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl. 1(4), 437–478 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Don, G., Muir, K., Volk, G., Walker, J.: Music: broken symmetry, geometry, and complexity. Not. Am. Math. Soc. 57(1), 30–49 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Evangelista, G., Dörfler, M., Matusiak, E.: Phase vocoders with arbitrary frequency band selection. In: Proceedings of the 9th Sound and Music Computing Conference, Kopenhagen (2012)

    Google Scholar 

  9. Feichtinger, H.G.: On a new Segal algebra. Monatsh. Math. 92, 269–289 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: Radha, R., Krishna, M., Thangavelu, S. (eds.) Proceedings of the International Conference on Wavelets and Applications, Chennai, Jan 2002, pp. 1–56. Allied, New Delhi (2003)

    Google Scholar 

  11. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: Gabor Analysis and Algorithms. Theory and Applications, pp. 233–266. Birkhäuser, Boston (1998)

    Google Scholar 

  14. Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the fundamental identity of gabor analysis. Collect. Math. 57(2006), 233–253 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  16. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Gabor Analysis and Algorithms. Theory and Applications, pp. 123–170. Birkhäuser, Boston (1998)

    Google Scholar 

  17. Feichtinger, H.G., Luef, F., Werther, T.: A guided tour from linear algebra to the foundations of Gabor analysis. In: Gabor and Wavelet Frames. Lecture Notes Series-Institute for Mathematical Sciences National University of Singapore, vol. 10, pp. 1–49. World Scientific, Hackensack (2007)

    Google Scholar 

  18. Feichtinger, H.G., Hazewinkel, M., Kaiblinger, N., Matusiak, E., Neuhauser, M.: Metaplectic operators on \(\mathbb{C}^{n}\). Quart. J. Math. Oxf. Ser. 59(1), 15–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feichtinger, H.G., Kozek, W., Luef, F.: Gabor analysis over finite Abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fish, A., Gurevich, S., Hadani, R., Sayeed, A., Schwartz, O.: Delay-Doppler channel estimation with almost linear complexity. In: IEEE International Symposium on Information Theory, Cambridge (2012)

    Google Scholar 

  21. Gabor, D.: Theory of communication. J. IEE 93(26), 429–457 (1946)

    Google Scholar 

  22. Gröchenig, K.: Foundations of time-frequency analysis. In: Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Google Scholar 

  23. Gröchenig, K., Heil, C.: Modulation spaces and pseudodifferential operators. Integr. Equ. Oper. Theory 34(4), 439–457 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)

    Article  MATH  Google Scholar 

  25. Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162(6), 1003–1031 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gröchenig, K., Han, D., Heil, C., Kutyniok, G.: The Balian-Low theorem for symplectic lattices in higher dimensions. Appl. Comput. Harmon. Anal. 13(2), 169–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurevich, S., Hadani, R., Sochen, N.: The finite harmonic oscillator and its applications to sequences, communication, and radar. IEEE Trans. Inf. Theory 54(9), 4239–4253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hrycak, T., Das, S., Matz, G., Feichtinger, H.G.: Practical estimation of rapidly varying channels for OFDM systems. IEEE Trans. Commun. 59(11), 3040–3048 (2011)

    Article  Google Scholar 

  30. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Janssen, A.J.E.M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12(2), 259–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaiblinger. N.: Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl. 11(1), 25–42 (2005)

    Google Scholar 

  33. Laback, B., Balazs, P., Necciari, T., Savel, S., Ystad, S., Meunier, S., Kronland Martinet, R.: Additivity of auditory masking for short Gaussian-shaped sinusoids. J. Acoust. Soc. Am. 129, 888–897 (2012)

    Article  Google Scholar 

  34. Luef, F.: Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J. Funct. Anal. 257(6), 1921–1946 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luef, F., Manin, Y.I.: Quantum theta functions and Gabor frames for modulation spaces. Lett. Math. Phys. 88(1–3), 131–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lyubarskii, Y.I.: Frames in the Bargmann space of entire functions. In: Entire and Subharmonic Functions. Volume 11 of Adv. Sov. Math., pp. 167–180. AMS, Philadelphia (1992)

    Google Scholar 

  37. Morgenshtern, V., Riegler, E., Yang, W., Durisi, G., Lin, S., Sturmfels, B., Bölcskei, H.: Capacity pre-log of noncoherent SIMO channels via Hironaka’s theorem. IEEE Trans. Inf. Theory 59(7), 4213–4229 (2013)

    Article  Google Scholar 

  38. Rieffel, M.A.: Projective modules over higher-dimensional noncommutative tori. Can. J. Math. 40(2), 257–338 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in \(L_{2}(\mathbb{R}^{d})\). Duke Math. J. 89(2), 237–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)

    MathSciNet  MATH  Google Scholar 

  41. Soendergaard, P.L.: Gabor frames by sampling and periodization. Adv. Comput. Math. 27(4), 355–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sondergaard, P.L., Torresani, B., Balazs, P.: The Linear Time Frequency Analysis Toolbox. Int. J. Wavelets Multires. Inf. Proc. 10(4), 1250032–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strohmer, T.: Pseudodifferential operators and Banach algebras in mobile communications. Appl. Comput. Harmon. Anal. 20(2), 237–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Walnut, D.F.: Continuity properties of the Gabor frame operator. J. Math. Anal. Appl. 165(2), 479–504 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wexler, J., Raz. S.: Discrete Gabor expansions. Signal Process. 21, 207–220 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Feichtinger, H.G., Luef, F. (2015). Gabor Analysis and Algorithms. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_354

Download citation

Publish with us

Policies and ethics