Skip to main content

Whole Body and Spinal Radiosurgery

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery
  • 208 Accesses

Abstract

Over the past decade, minimally invasive surgical techniques have evolved in the field of spine surgery [1]. Such techniques follow a natural trend in surgery to minimize injury to normal tissue while obtaining the same or better surgical outcome. In a similar fashion, there has been substantial interest in applying minimally invasive techniques to the field of spine oncology. Malignancy involving the spine is an important clinical problem in oncology. Although primary tumors of the spine are relatively rare, they are typically very symptomatic and difficult to treat [2]. Secondary malignancy of the spinal column is extremely common. In a study of 2,000 patients with bony metastases, nearly 70% were found to have vertebral body metastases [3]. There are over 180,000 new cases of spinal metastases diagnosed in North America each year, with 20,000 clinical cases of spinal cord compression [2,4,5]. The incidence and prevalence of spine tumors is expected to rise in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horn E, Henn J, Lemole J, GM. Thoracoscopic placement of dural-rod instrumentation in thoracic spinal trauma. Neurosurgery 2004;54:1150–4.

    Article  PubMed  Google Scholar 

  2. Yamada Y, Lovelock D, Bilsky M. A review of image-guided intensity-modulated radiotherapy for spinal tumors. Neurosurgery 2007;61:226–35.

    Article  PubMed  Google Scholar 

  3. Clain A. Secondary malignant disease of bone. Br J Cancer 1965;19:15–29.

    Article  PubMed  CAS  Google Scholar 

  4. Black P. Spinal metastasis: current status and recommended guidelines for management. Neurosurgery 1979;5:726–46.

    Article  PubMed  CAS  Google Scholar 

  5. Gokaslan Z, York J, Walsh G. Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurgery 1998;89:599–609.

    Article  CAS  Google Scholar 

  6. Gerszten PC, Welch WC. Current surgical management of metastatic spinal disease. Oncology 2000;14:1013–36.

    PubMed  CAS  Google Scholar 

  7. Faul CM, Flickinger JC. The use of radiation in the management of spinal metastases. J Neurooncol 1995;23:149–61.

    Article  PubMed  CAS  Google Scholar 

  8. Kim YH, Fayos JV. Radiation tolerance of the cervical spinal cord. Radiology 1981;139:473–8.

    PubMed  CAS  Google Scholar 

  9. Markoe AM, Schwade JG. The role of radiation therapy in the management of spine and spinal cord tumors. In: Rea GL, editor. Spine tumors. American Association of Neurological Surgeons; 1994. p. 23-35.

    Google Scholar 

  10. Shapiro W, Posner JB. Medical vs surgical treatment of metastatic spinal cord tumors. In: Thompson R, Green J, editors. Controversies in Neurology. New York: Raven Press; 1983. p. 57–65.

    Google Scholar 

  11. Sundaresan N, Digiacinto GV, Hughes JEO, et al. Treatment of neoplastic spinal cord compression: results of a prospective study. Neurosurgery 1991;29:645–50.

    Article  PubMed  CAS  Google Scholar 

  12. Sundaresan N, Krol G, Digiacinto CV, et al. Metastatic tumors of the spine. In: Sundaresan B, Schmidek H, Schiller A, et al., editors. Tumors of the spine. Philadelphia, PA: W.B. Saunders; 1990:279–304.

    Google Scholar 

  13. Lu C, Stomper PC, Drislane FW, et al. Suspected spinal cord compression in breast cancer patients: a multidisciplinary risk assessment. Breast Cancer Res Treat 1998;51:121–31.

    Article  PubMed  CAS  Google Scholar 

  14. Vitaz T, Oishi M, Welch W, et al. Rotational and transpositional flaps for the treatment of spinal wound dehiscence and infections in patient populations with degenerative and oncological disease. J Neurosurg Spine 2004;100:46–51.

    Article  Google Scholar 

  15. Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. The Lancet 2005;21:1–6.

    Google Scholar 

  16. Loblaw DA, Laperriere NJ. Emergency treatment of malignant extradural spinal cord compression: an evidence-based guideline. J Clin Oncol 1998;16:1613–24.

    PubMed  CAS  Google Scholar 

  17. Ryu S, Chang S, Kim D, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 2001;49:838–46.

    Article  PubMed  CAS  Google Scholar 

  18. Amendola B, Wolf A, Coy S, et al. Gamma knife radiosurgery in the treatment of patients with single and multiple brain metastases from carcinoma of the breast. Cancer J 2000;6:88–92.

    PubMed  CAS  Google Scholar 

  19. Benzil DL, Saboori M, Mogilner AY, et al. Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurgery 2004;101:413–8.

    Google Scholar 

  20. Bilsky MH, Yamada Y, Yenice KM, et al. Intensity-modulated stereotactic radiotherapy of paraspinal tumors: a preliminary report. Neurosurgery 2004;54:823–30.

    Article  PubMed  Google Scholar 

  21. Chang EL, Shiu AS, Lii M-F, et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Rad Onc Biol Phys 2004;59:1288–94.

    Article  Google Scholar 

  22. Desalles AA, Pedroso A, Medin P, et al. Spinal lesions treated with Novalis shaped beam intensity modulated radiosurgery and stereotactic radiotherapy. J Neurosurgery 2004;101:435–40.

    Article  Google Scholar 

  23. Gagnon GJ, Henderson FC, Gehan EA, et al. Cyberknife radiosurgery for breast cancer spine metastases: a matched-pair analysis. Cancer 2007;110:1796–802.

    Article  PubMed  Google Scholar 

  24. Jin J-Y, Chen Q, Jin R, et al. Technical and clinical experience with spine radiosurgery: a new technology for management of localized spine metastases. Technol Cancer Res Treat 2007;6:127–33.

    PubMed  Google Scholar 

  25. Milker-Zabel S, Zabel A, Thilmann C, et al. Clinical results of retreatment of vertebral bone metastases by stereotactic conformal radiotherapy and intensity-modulated radiotherapy. Int J Rad Onc Biol Phys 2003;55:162–7.

    Article  Google Scholar 

  26. Ryu S, Yin FF, Rock J, et al. Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 2003;97:2013–8.

    Article  PubMed  Google Scholar 

  27. Shiu AS, Chang EL, Ye J-S. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Rad Onc Biol Phys 2003;57:605–13.

    Article  Google Scholar 

  28. Yin FF, Ryu S, Ajlouni M, et al. Image-guided procedures for intensity-modulated spinal radiosurgery. J Neurosurgery 2004;101:419–24.

    Google Scholar 

  29. Auchter R, Lamond J, Alexander E. A multinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Rad Onc Biol Phys 1996;35:27–35.

    Article  CAS  Google Scholar 

  30. Chang S, Adler J, Hancock S. The clinical use of radiosurgery. Oncology 1998;12:1181–91.

    PubMed  CAS  Google Scholar 

  31. Flickinger J, Kondziolka D, Lunsford L. A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Rad Onc Biol Phys 1994;28:797–802.

    Article  CAS  Google Scholar 

  32. Kondziolka D, Patel A, Lunsford L. Stereotactic radiosurgery plus whole brain radiotherapy vs radiotherapy alone for patients with multiple brain metastases. Int J Rad Onc Biol Phys 1999;45:427–34.

    Article  CAS  Google Scholar 

  33. Loeffler J, Alexander EI. Radiosurgery for the treatment of intracranial metastasis. New York: McGraw-Hill; 1993.

    Google Scholar 

  34. Loeffler JS, Kooy HM, Wen PY, et al. The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol 1990;8:576–82.

    PubMed  CAS  Google Scholar 

  35. Sperduto P, Scott C, Andrews D. Stereotactic radiosurgery with whole brain radiation therapy improves survival in patients with brain metastases: report of radiation therapy oncology group phase III study 95–08. Int J Rad Onc Biol Phys 2002;54:3a.

    Article  Google Scholar 

  36. Conti P, Pansini G, Mouchaty H, et al. Spinal neurinomas: retrospective analysis and long-term outcome of 179 consecutively operated cases and review of the literature. Surg Neurol 2004;61:34–44.

    Article  PubMed  Google Scholar 

  37. Degen JW, Gagnon GJ, Voyadzis J-M, et al. CyberKnife stereotactic radiosurgical treatment of spinal tumors for pain control and quality of life. J Neurosurg Spine 2005;2:540–9.

    Article  PubMed  Google Scholar 

  38. Hamilton AJ. Linear accelerator (LINAC) – based stereotactic spinal radiosurgery. In: Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. New York: McGraw-Hill; 1998. p. 857–69.

    Google Scholar 

  39. Hamilton A, Lulu B. A prototype design for linear accelerator based radiosurgery. Acta Neurochir (Wien) 1995;63:40–3.

    CAS  Google Scholar 

  40. Blomgren H, Lax I, Naslund I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol 1995;34:861–70.

    Article  PubMed  CAS  Google Scholar 

  41. Lax I, Blomgren H, Naslund I, et al. Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol 1994;33:677–83.

    Article  PubMed  CAS  Google Scholar 

  42. Hamilton A, Lulu B, Fosmire H, et al. Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 1995;36:311–9.

    Article  PubMed  CAS  Google Scholar 

  43. Baisden JM, Benedict SH, Sheng K, et al. Helical tomotherapy in the treatment of central nervous system metastasis. Neurosurg Focus 2007;22:1–6.

    Article  Google Scholar 

  44. Chang S, Adler J. Current status and optimal use of radiosurgery. Oncology 2001;15:209–21.

    PubMed  CAS  Google Scholar 

  45. Colombo F, Pozza F, Chierego G. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 1994;34:14–21.

    Article  PubMed  CAS  Google Scholar 

  46. Gerszten PC, Burton SA, Ozhasoglu C, et al. Single fraction radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 2007;32:193–9.

    Article  PubMed  Google Scholar 

  47. Gerszten PC, Welch WC. CyberKnife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 2004;15:491–501.

    Article  PubMed  Google Scholar 

  48. Hitchcock E, Kitchen G, Dalton E, et al. Stereotactic linac radiosurgery. Br J Neurosurg 1989;3:305–12.

    Article  PubMed  CAS  Google Scholar 

  49. Medin P, Solberg T, DeSalles A. Investigations of a minimally invasive method for treatment of spinal malignancies with LINAC stereotactic radiation therapy: accuracy and animal studies. Int J Rad Onc Biol Phys 2002;52:1111–22.

    Article  Google Scholar 

  50. Pirzkall A, Lohr F, Rhein B, et al. Conformal radiotherapy of challenging paraspinal tumors using a multiple arc segment technique. Int J Rad Onc Biol Phys 2000;48:1197–204.

    Article  CAS  Google Scholar 

  51. Ryu S, Rock J, Rosenblum M, et al. Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurgery 2004;101:402–5.

    Article  Google Scholar 

  52. Pieters RS, Niemierko A, Fullerton BC, et al. Cauda equina tolerance to high dose fractionated irradiation. Int J Rad Onc Biol Phys 2006;64:251–7.

    Article  Google Scholar 

  53. Ryu S, Jin J-Y, Jin R, et al. Partial volume tolerance of the spinal cord and complications of single dose radiosurgery. Cancer 2007;109:628–36.

    Article  PubMed  Google Scholar 

  54. Hopewell J, Morris A, Dixon-Brown A. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays. Br J Radiol 1987;60:1099–108.

    Article  PubMed  CAS  Google Scholar 

  55. Emami B, Lyman A, Brown JT, et al. Tolerance of normal tissue to therapeutic irradiation. J Radiat Oncol Biol Phys 1991;21:109–22.

    CAS  Google Scholar 

  56. Gerszten PC, Bilsky MH. Spine radiosurgery. Contemp Neurosurg 2006;28:1–8.

    Google Scholar 

  57. Tong D, Hendrickson F. The palliation of symptomatic osseous metastases; final results of the study by the radiation therapy oncology group. Cancer 1982;50:893–9.

    Article  PubMed  CAS  Google Scholar 

  58. Wara WM, Phillips TL, Sheline GE, et al. Radiation tolerance of the spinal cord. Cancer 1975;35:1558–62.

    Article  PubMed  CAS  Google Scholar 

  59. Hatlevoll R, Host H, Kaalhus O. Myelopathy following radiotherapy of bronchial carcinoma with large single fractions: a retrospective study. Int J Radiat Oncol Biol Phys 1983;9:41–4.

    Article  PubMed  CAS  Google Scholar 

  60. Abbatucci JS, Delozier T, Quint R, et al. Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 1978;4:239–48.

    Article  PubMed  CAS  Google Scholar 

  61. McCuniff AJ, Liang MJ. Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 1989;16:675–8.

    Article  Google Scholar 

  62. Phillips TL, Buschke F. Radiation tolerance of the thoracic spinal cord. AJR 1969;105:659–64.

    CAS  Google Scholar 

  63. Klish MD, Watson GA, Shrieve DC. Radiation and intensity-modulated radiotherapy for metastatic spine tumors. Neurosurg Clin N Am 2004;15:481–90.

    Article  PubMed  Google Scholar 

  64. Rock JP, Ryu S, Yin FF. Novalis radiosurgery for metastatic spine tumors. Neurosurgery Clinics of North America 2004;15:503–9.

    Article  PubMed  Google Scholar 

  65. Yamada Y, Lovelock M, Yenice KM, et al. Multifractionated image-guided and stereotactic intensity modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Rad Onc Biol Phys 2005;62:53–61.

    Article  Google Scholar 

  66. Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 2007;60:147–56.

    Article  Google Scholar 

  67. Muacevic A, Staehler M, Drexler C, et al. Technical description, phantom accuracy and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 2006;5:303–12.

    Article  PubMed  Google Scholar 

  68. Adler J, Murphy M, Chang S, et al. Image-guided robotic radiosurgery. Neurosurgery 1999;44:1–8.

    Article  Google Scholar 

  69. Adler JR, Chang SD, Murphy MJ, et al. The CyberKnife: a frameless robotic system for radiosurgery. Stereotactic and Functional Neurosurgery 1997;69:124–8.

    Article  PubMed  Google Scholar 

  70. Murphy MJ, Cox RS. Frameless radiosurgery using real-time image correlation for beam targeting. Med Phys 1996;23:1052–3.

    Article  Google Scholar 

  71. Welsh J, Mehta M, Mackie T, et al. Helical tomotherapy as a means of delivering scalpsparing whole brain radiation therapy. Technol Cancer Res Treat 2005;4:661–2.

    PubMed  Google Scholar 

  72. Extracranial Stereotactic Radiotherapy and Radiosurgery. Slotman BJ, Solberg TD, Verellen D, editors. New York: Taylor and Francis Group; 2006.

    Google Scholar 

  73. Stereotactic Body Radiation Therapy. Kavanagh BD, Timmerman RD, editors. Philadelphia, PA: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  74. Timmerman RD, Papiez L, McGarry R. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 2003;124:1946–55.

    Article  PubMed  Google Scholar 

  75. Timmerman RD, McGarry R, Yiannoutsos C. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006; 24:4833–9.

    Article  PubMed  Google Scholar 

  76. Nagata Y, Takayama K, Matsuo Y. Clinical outcomes of a phase I/II study of 48Gy stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 2005;63:1427–31.

    Article  PubMed  Google Scholar 

  77. Onishi H, Araki T, Shirato H. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanes multiinstitutional study. Cancer 2004;101:1623–31.

    Article  PubMed  Google Scholar 

  78. Uematsu M, Shioda A, Tahara K. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: 5-year experience. Int J Radiat Oncol Biol Phys 2001;51:666–70.

    Article  PubMed  CAS  Google Scholar 

  79. Timmerman RD. Stereotactic body radiation therapy. Curr Probl Cancer 2005;29:120–57.

    Article  PubMed  Google Scholar 

  80. Timmerman R, Kavanagh B, Chos CL. Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 2007;25:947–52.

    Article  PubMed  Google Scholar 

  81. Shefter TE, Cardenes HR, Kavanagh BD. 2005.Stereotactic body radiotherapy for liver tumors. In: Kavanagh BD, Timmerman RD, editors. Stereotactic Body Radiation Therapy. Lippincott Williams and Wilkins; Philadelphia, PA:

    Google Scholar 

  82. Gerszten PC, Burton S, Ozhasoglu C, et al. Stereotactic radiosurgery for spine metastases from renal cell carcinoma. J Neurosurg Spine 2005;3:288–95.

    Article  PubMed  Google Scholar 

  83. Gerszten PC, Burton S, Welch WC, et al. Single fraction radiosurgery for the treatment of breast metastases. Cancer 2005;14:2244–54.

    Article  Google Scholar 

  84. Gerszten PC, Burton SA, Belani C, et al. Radiosurgery for the treatment of spinal lung metastases. Cancer 2006;107(11):2653–61.

    Article  PubMed  Google Scholar 

  85. Gerszten PC, Burton SA, Quinn AE, et al. Radiosurgery for the treatment of spinal melanoma metastases. Stereotact Funct Neurosurg 2006;83:213–21.

    Article  Google Scholar 

  86. Ryken TC, Meeks SL, Pennington EC, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Rad Onc Biol Phys 2001;51:1152–8.

    Article  CAS  Google Scholar 

  87. Rock J, Ryu S, Shukairy MS, et al. Postoperative radiosurgery for malignant spinal tumors. Neurosurgery 2006;58:891–8.

    Article  PubMed  Google Scholar 

  88. Cohen-Gadol A, Zikel O, Koch C, et al. Spinal meningiomas in patients younger than 50 years of age: a 21-year experience. J Neurosurg Spine 2003;98:258–63.

    Article  Google Scholar 

  89. Dodd RL, Ryu MR, Kammerdsupaphon P, et al. CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 2006;58:674–85.

    Article  PubMed  Google Scholar 

  90. Peker S, Cerci A, Ozgen S, et al. Spinal meningiomas: evaluation of 41 patients. J Neurosurg Sci 2005;49:7–11.

    PubMed  CAS  Google Scholar 

  91. Gerszten PC, Burton SA, Ozhasoglu C, et al. Radiosurgery for benign intradural spinal tumors. J Neurosurgery 2007;106:A742.

    Google Scholar 

  92. Seppala M, Haltia M, Sankila R, et al. Long term outcome after removal of spinal schwannoma: a clinicalopathological study of 187 cases. J Neurosurgery 1995;83:621–6.

    Article  CAS  Google Scholar 

  93. Rampling R, Symonds S. Radiation myelopathy. Curr Opin Neurol 1998;11:627–32.

    Article  PubMed  CAS  Google Scholar 

  94. Steiner L, Lesksell L, Greitz T, et al. Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir Scand 1972;138:459–64.

    PubMed  CAS  Google Scholar 

  95. Chang S, Shuster D, Steinberg G, et al. Stereotactic radiosurgery of arteriovenous malformations: pathologic changes in resected tissue. Clin Neuropathol 1997;16:111–6.

    PubMed  CAS  Google Scholar 

  96. Betti O, Munari C, Rosler R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery 1989;24:311–21.

    Article  PubMed  CAS  Google Scholar 

  97. Coffey R, Lunsford L, Bissonette D, et al. Stereotactic gamma radiosurgery for intracranial vascular malformations and tumors: report of the initial North American experience in 331 patients. Stereotact Funct Neurosurg 1990;54:535–40.

    Article  PubMed  Google Scholar 

  98. Colombo F, Benedetti A, Pozza F, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery 1989;24:833–40.

    Article  PubMed  CAS  Google Scholar 

  99. Friedman W, Bova F. Linear accelerator radiosurgery for arteriovenous malformations. J Neurosurgery 1992;77:832–41.

    Article  CAS  Google Scholar 

  100. Steinberg G, Fabrikant J, Marks M, et al. Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations (see comments). N Engl J Med 1990;323:96–101.

    Article  PubMed  CAS  Google Scholar 

  101. Steiner L. Radiosurgery in cerebral arteriovenous. In: Flamm ES, Fein J, editors. Cerebrovascular surgery. New York: Springer; 1985. p. 1161–215.

    Google Scholar 

  102. Sinclair J, Chang SD, Gibbs IC, et al. Multisession CyberKnife radiosurgery for intramedullary spinal cord arteriovenous malformations. Neurosurgery 2006;58: 6 1081–9.

    Article  PubMed  Google Scholar 

  103. Chang S, Hancock S, Gibbs I, et al. Spinal cord arteriovenous malformation radiosurgery. In: Gerszten PC, Ryu SI, editors. Spine radiosurgery. New York: Thieme; (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gerszten, P.C. (2009). Whole Body and Spinal Radiosurgery. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics