Skip to main content

Novel Therapies for Brain Tumors

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery

Abstract

Approximately 18,000 new cases of primary brain tumors are diagnosed annually in the United States [1]. Despite significant advancements in neurosurgical techniques, radiotherapy, imaging modalities, and molecular neuro-oncology, there remains little improvement in clinical outcome for most patients. In fact, the median survival time of patients with malignant gliomas, particularly glioblastoma multiforme (GBM), the most common primary brain tumor, remains less than 1 year, with more than 90% of patients succumbing within 5 years of diagnosis [2]. Several factors are thought to underlie the lack of progress in developing effective treatments for malignant brain tumors. First, the central nervous system (CNS) presents a unique environment with limited capacity for self repair. The presence of the blood-brain barrier (BBB) further complicates systemic delivery of chemotherapeutic agents to CNS lesions. In addition, malignant brain tumor cells have unique innate properties that pose additional problems. These tumors are inherently aggressive, as highlighted by their remarkable degree of resistance to conventional therapies. Their widely infiltrating nature also makes them suboptimal candidates for surgical intervention. Finally, the lack of predictive preclinical models, coupled with our relatively poor understanding of glioma pathogenesis, has impeded the development of novel treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ries LAG, Eisner MP, Kosary CL, et al. (eds.). SEER cancer statistics review, 1975–2002 (http://seer.cancer.gov/csr/1975_48/). Bethesda, MD: National Cancer Institute; 2005.

  2. Deorah S, Lynch CF, Sibenaller ZA, Ryken TC. Trends in brain cancer incidence and survival in the United States: surveillance, epidemiology, and end results program, 1973 to 2001. Neurosurg Focus 2006;20:E1.

    Article  PubMed  Google Scholar 

  3. Central nervous system cancers. National comprehensive cancer network clinical practice guidelines in oncology, vol. 1. http://www.nccn.org/professionals/physician_gls/PDF/cns.pdf, 2008 (accessed on March 27, 2008).

  4. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  5. Stupp R, Dietrich PY, Ostermann Kraljevic S, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 2002;20:1375–82.

    Article  PubMed  CAS  Google Scholar 

  6. Sampath P, Brem H. Implantable slow-release chemotherapeutic polymers for the treatment of malignant brain tumors. Cancer Control 1998;5:130–7.

    PubMed  Google Scholar 

  7. Mak M, Fung L, Strasser JF, Saltzman WM. Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995;26:91–102.

    Article  PubMed  CAS  Google Scholar 

  8. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 1995;345:1008–12.

    Article  PubMed  CAS  Google Scholar 

  9. Valtonen S, Timonen U, Toivanen P, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997; 41:44–8; discussion 48-9.

    Article  PubMed  CAS  Google Scholar 

  10. Brem H, Ewend MG, Piantadosi S, et al. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol 1995;26:111–23.

    Article  PubMed  CAS  Google Scholar 

  11. Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol 2005;110:435–42.

    Article  PubMed  Google Scholar 

  12. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet 2002;41:403–19.

    Article  PubMed  CAS  Google Scholar 

  13. Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91:2076–80.

    Article  PubMed  CAS  Google Scholar 

  14. Morrison PF, Chen MY, Chadwick RS, et al. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 1999;277:R1218–29.

    PubMed  CAS  Google Scholar 

  15. Lopez KA, Waziri AE, Canoll PD, Bruce JN. Convection-enhanced delivery in the treatment of malignant glioma. Neurol Res 2006;28:542–8.

    Article  PubMed  Google Scholar 

  16. Saito R, Krauze MT, Bringas JR, et al. Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 2005;196:381–9.

    Article  PubMed  CAS  Google Scholar 

  17. Sawyer AJ, Piepmeier JM, Saltzman WM. New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 2006;79:141–52.

    PubMed  CAS  Google Scholar 

  18. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001;19:32S–40S.

    PubMed  CAS  Google Scholar 

  19. Chamberlain MC. Treatment options for glioblastoma. Neurosurg Focus 2006;20:E2.

    Article  Google Scholar 

  20. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001;8:83–96.

    Article  PubMed  CAS  Google Scholar 

  21. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005;353:2012–24.

    Article  PubMed  CAS  Google Scholar 

  22. Li B, Yuan M, Kim IA, et al. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 2004;23:4594–602.

    Article  PubMed  CAS  Google Scholar 

  23. Choe G, Horvath S, Cloughesy TF, et al. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003;63:2742–6.

    PubMed  CAS  Google Scholar 

  24. Pelloski CE, Ballman KV, Furth AF, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 2007;25:2288–94.

    Article  PubMed  CAS  Google Scholar 

  25. Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004;22:133–42.

    Article  PubMed  CAS  Google Scholar 

  26. Uhm JH, Ballman KV, Giannini C, et al. Phase II study of ZD1839 in patients with newly diagnosed grade 4 astrocytoma [abstract]. J Clin Oncol 2004;22:1505.

    Google Scholar 

  27. Cloughesy T, Yung A, Vrendenberg J, et al. Phase II study of erlotinib in recurrent GBM: molecular predictors of outcome [abstract]. J Clin Oncol 2005;23:1507.

    Article  CAS  Google Scholar 

  28. Vogelbaum MA, Peereboom D, Stevens G, et al. Phase II trial of the EGFR tyrosine kinase inhibitor erlotinib for single agent therapy of recurrent glioblastoma multiforme: interim results [abstract]. J Clin Oncol 2004;22:1558.

    Google Scholar 

  29. Prados M, Chang S, Burton E, et al. Phase I study of OSI-774 alone or with temozolomide in patients with malignant glioma [abstract]. J Clin Oncol 2003;22:394.

    Google Scholar 

  30. Peereboom DM, Brewer CJ, Suh JH, et al. Phase II trial of erlotinib with temozolomide and concurrent radiation therapy in patients with newly diagnosed glioblastoma multiforme: final results [abstract]. Neuro-oncol 2006;8:448.

    Google Scholar 

  31. Sadones J, Chaskis C, Joosens EJ, et al. A stratified phase II study of cetuximab for the treatment of recurrent glioblastoma multiforme: preliminary results [abstract]. J Clin Oncol 2006;24:1558.

    Google Scholar 

  32. Reardon DA, Quinn JA, Vredenburgh JJ, et al. Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 2006;12:860–8.

    Article  PubMed  CAS  Google Scholar 

  33. Doherty L, Gigas DC, Kesari S, et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 2006;67:156–8.

    Article  PubMed  CAS  Google Scholar 

  34. Fournier E, Birnbaum D, Borg JP. [Receptors for factors of the VEGF (vascular endothelial growth family)]. Bull Cancer 1997;84:397–405.

    PubMed  CAS  Google Scholar 

  35. Stark-Vance V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma [abstract]. Neuro-oncol 2005;7:369.

    Google Scholar 

  36. Goli KJ, Desjardins A, Herndon JE, et al. Phase II trial of bevacizumab and irinotecan in the treatment of malignant gliomas [abstract]. J Clin Oncol 2007;25:2003.

    Google Scholar 

  37. Conrad C, Friedman H, Reardon D, et al. A phase I/II trial of single-agent PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM) [abstract]. J Clin Oncol 2004;22:1512.

    Google Scholar 

  38. Wong ML, Kaye AH, Hovens CM. Targeting malignant glioma survival signalling to improve clinical outcomes. J Clin Neurosci 2007;14:301–8.

    Article  PubMed  CAS  Google Scholar 

  39. Sathornsumetee S, Reardon DA, Desjardins A, et al. Molecularly targeted therapy for malignant glioma. Cancer 2007;110:13–24.

    Article  PubMed  Google Scholar 

  40. Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev Anticancer Ther 2003;3:595–614.

    Article  PubMed  CAS  Google Scholar 

  41. Fleming TP, Saxena A, Clark WC, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 1992;52:4550–3.

    PubMed  CAS  Google Scholar 

  42. Lokker NA, Sullivan CM, Hollenbach SJ, et al. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 2002;62:3729–35.

    PubMed  CAS  Google Scholar 

  43. George D. Platelet-derived growth factor receptors: a therapeutic target in solid tumors. Semin Oncol 2001;28:27–33.

    Article  PubMed  CAS  Google Scholar 

  44. Strawn LM, Mann E, Elliger SS, et al. Inhibition of glioma cell growth by a truncated platelet-derived growth factor-beta receptor. J Biol Chem 1994;269:21215–22.

    PubMed  CAS  Google Scholar 

  45. Pietras K, Rubin K, Sjoblom T, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 2002;62:5476–84.

    PubMed  CAS  Google Scholar 

  46. Plate KH, Breier G, Farrell CL, Risau W. Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 1992;67:529–34.

    PubMed  CAS  Google Scholar 

  47. Pietras K. Increasing tumor uptake of anticancer drugs with imatinib. Semin Oncol 2004;31:18–23.

    Article  PubMed  CAS  Google Scholar 

  48. Geng L, Shinohara ET, Kim D, et al. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int J Radiat Oncol Biol Phys 2006;64:263–71.

    Article  PubMed  Google Scholar 

  49. Wen PY, Yung WK, Hess K, et al. Phase I study of STI571 (Gleevec) for patients with recurrent malignant gliomas and meningiomas (NABTC 99–08) [abstract]. J Clin Oncol 2002;21:73.

    Google Scholar 

  50. Holdhoff M, Kreuzer KA, Appelt C, et al. Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells Mol Dis 2005;34:181–5.

    Article  PubMed  CAS  Google Scholar 

  51. O’Reilly T, Wartmann M, Maira SM, et al. Patupilone (epothilone B, EPO906) and imatinib (STI571, Glivec) in combination display enhanced antitumour activity in vivo against experimental rat C6 glioma. Cancer Chemother Pharmacol 2005;55:307–17.

    Article  PubMed  CAS  Google Scholar 

  52. Katayama R, Huelsmeyer MK, Marr AK, et al. Imatinib mesylate inhibits platelet-derived growth factor activity and increases chemosensitivity in feline vaccine-associated sarcoma. Cancer Chemother Pharmacol 2004;54:25–33.

    Article  PubMed  CAS  Google Scholar 

  53. Dogruel M, Gibbs JE, Thomas SA. Hydroxyurea transport across the blood-brain and blood-cerebrospinal fluid barriers of the guinea-pig. J Neurochem 2003;87:76–84.

    Article  PubMed  CAS  Google Scholar 

  54. Gwilt PR, Manouilov KK, McNabb J, Swindells SS. Pharmacokinetics of hydroxyurea in plasma and cerebrospinal fluid of HIV-1-infected patients. J Clin Pharmacol 2003;43:1003–7.

    Article  PubMed  CAS  Google Scholar 

  55. Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 2005;16:1702–8.

    Article  PubMed  CAS  Google Scholar 

  56. Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005;23:9359–68.

    Article  PubMed  CAS  Google Scholar 

  57. Couldwell WT, Hinton DR, Surnock AA, et al. Treatment of recurrent malignant gliomas with chronic oral high-dose tamoxifen. Clin Cancer Res 1996;2:619–22.

    PubMed  CAS  Google Scholar 

  58. Mastronardi L, Puzzilli F, Couldwell WT, et al. Tamoxifen and carboplatin combinational treatment of high-grade gliomas. Results of a clinical trial on newly diagnosed patients. J Neurooncol 1998;38:59–68.

    Article  PubMed  CAS  Google Scholar 

  59. Napolitano M, Keime-Guibert F, Monjour A, et al. Treatment of supratentorial glioblastoma multiforme with radiotherapy and a combination of BCNU and tamoxifen: a phase II study. J Neurooncol 1999;45:229–35.

    Article  PubMed  CAS  Google Scholar 

  60. Vertosick FT, Selker RG. The treatment of newly diagnosed glioblastoma multiforme using high dose tamoxifen (TMX), radiotherapy and conventional chemotherapy [abstract # 2887]. Proc Am Assoc Cancer Res 1997; 2887.

    Google Scholar 

  61. Preul MC, Caramanos Z, Villemure JG, et al. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000;46:306–18.

    Article  PubMed  CAS  Google Scholar 

  62. Bianco R, Shin I, Ritter CA, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003;22:2812–22.

    Article  PubMed  CAS  Google Scholar 

  63. Chakravarti A, Zhai G, Suzuki Y, et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 2004;22:1926–33.

    Article  PubMed  CAS  Google Scholar 

  64. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005;23:5294–304.

    Article  PubMed  CAS  Google Scholar 

  65. Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005;23:357–61.

    Article  PubMed  CAS  Google Scholar 

  66. Black KL, Chen K, Becker DP, Merrill JE. Inflammatory leukocytes associated with increased immunosuppression by glioblastoma. J Neurosurg 1992;77:120–6.

    Article  PubMed  CAS  Google Scholar 

  67. Elliott LH, Brooks WH, Roszman TL. Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high affinity interleukin 2 receptors. J Clin Invest 1990;86:80–6.

    Article  PubMed  CAS  Google Scholar 

  68. Bhondeley MK, Mehra RD, Mehra NK, et al. Imbalances in T cell subpopulations in human gliomas. J Neurosurg 1988;68:589–93.

    Article  PubMed  CAS  Google Scholar 

  69. Kikuchi T, Abe T, Ohno T. Effects of glioma cells on maturation of dendritic cells. J Neurooncol 2002;58:125–30.

    Article  PubMed  Google Scholar 

  70. Yang T, Witham TF, Villa L, et al. Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 2002;62:2583–91.

    PubMed  CAS  Google Scholar 

  71. Morford LA, Elliott LH, Carlson SL, et al. T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 1997;159:4415–25.

    PubMed  CAS  Google Scholar 

  72. Ehtesham M, Samoto K, Kabos P, et al. Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 2002;9:925–34.

    Article  PubMed  CAS  Google Scholar 

  73. Plautz GE, Touhalisky JE, Shu S. Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 1997;178:101–7.

    Article  PubMed  CAS  Google Scholar 

  74. Bodmer S, Strommer K, Frei K, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 1989;143:3222–9.

    PubMed  CAS  Google Scholar 

  75. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118–22.

    Article  PubMed  CAS  Google Scholar 

  76. Ruffini PA, Rivoltini L, Silvani A, et al. Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 1993;36:409–16.

    Article  PubMed  CAS  Google Scholar 

  77. Wikstrand CJ, Fung KM, Trojanowski JQ, et al. Immunohistochemistry and antigens of diagnostic significance. In: Bigner DD, McLendon RE, Bruner JM, editors. Russell and Rubinstein’s pathology of the nervous system. New York, NY: Oxford University Press; 1998. p. 251–304.1998.

    Google Scholar 

  78. Riva P, Arista A, Tison V, et al. Intralesional radioimmunotherapy of malignant gliomas. An effective treatment in recurrent tumors. Cancer 1994;73:1076–82.

    Article  PubMed  CAS  Google Scholar 

  79. Riva P, Arista A, Sturiale C, et al. Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys 1997; 24-25:37–43.

    Google Scholar 

  80. Riva P, Franceschi G, Arista A, et al. Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experience. Cancer 1997;80:2733–42.

    Article  PubMed  CAS  Google Scholar 

  81. Cokgor I, Akabani G, Kuan CT, et al. Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 2000;18:3862–72.

    PubMed  CAS  Google Scholar 

  82. Reardon DA, Akabani G, Coleman RE, et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002;20:1389–97.

    Article  PubMed  CAS  Google Scholar 

  83. Prados M, Kunwar S, Lang FF, et al. Final results of phase I/II studies of IL13-pE38QQR administered intratumorally (IT) and/or peritumorally (PT) via convection-enhanced delivery (CED) in patients undergoing tumor resection for recurrent malignant glioma [abstract]. J Clin Oncol 2005;23:1506.

    Google Scholar 

  84. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 1997;3:1362–8.

    Article  PubMed  CAS  Google Scholar 

  85. Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 2003;65:3–13.

    Article  PubMed  Google Scholar 

  86. Kuppner MC, Hamou MF, Sawamura Y, et al. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 1989;71:211–7.

    Article  PubMed  CAS  Google Scholar 

  87. Siepl C, Bodmer S, Frei K, et al. The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 1988;18:593–600.

    Article  PubMed  CAS  Google Scholar 

  88. Brandes AA, Scelzi E, Zampieri P, et al. Phase II trial with BCNU plus alpha-interferon in patients with recurrent high-grade gliomas. Am J Clin Oncol 1997;20:364–7.

    Article  PubMed  CAS  Google Scholar 

  89. Yung WK, Prados M, Levin VA, et al. Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J Clin Oncol 1991;9:1945–9.

    PubMed  CAS  Google Scholar 

  90. Hiserodt JC, Vujanovic NL, Reynolds CW, et al. Studies on lymphokine activated killer cells in the rat: analysis of precursor and effector cell phenotype and relationship to natural killer cells. Prog Clin Biol Res 1987;244:137–46.

    PubMed  CAS  Google Scholar 

  91. Hayes RL, Koslow M, Hiesiger EM, et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 1995;76:840–52.

    Article  PubMed  CAS  Google Scholar 

  92. Porgador A, Gilboa E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 1995;182:255–60.

    Article  PubMed  CAS  Google Scholar 

  93. Heimberger AB, Archer GE, Crotty LE, et al. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 2002; 50:158–64; discussion 164-6.

    PubMed  Google Scholar 

  94. Heimberger AB, Crotty LE, Archer GE, et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 2000;103:16–25.

    Article  PubMed  CAS  Google Scholar 

  95. Ni HT, Spellman SR, Jean WC, et al. Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 2001;51:1–9.

    Article  PubMed  CAS  Google Scholar 

  96. Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001;61:842–7.

    PubMed  CAS  Google Scholar 

  97. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005;11:5515–25.

    Article  PubMed  CAS  Google Scholar 

  98. Bogler O, Huang HJ, Kleihues P, Cavenee WK. The p53 gene and its role in human brain tumors. Glia 1995;15:308–27.

    Article  PubMed  CAS  Google Scholar 

  99. Prives C, Hall PA. The p53 pathway. J Pathol 1999;187:112–26.

    Article  PubMed  CAS  Google Scholar 

  100. Lang FF, Bruner JM, Fuller GN, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003;21:2508–18.

    Article  PubMed  CAS  Google Scholar 

  101. Curiel DT. The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 2000;6:3395–9.

    PubMed  CAS  Google Scholar 

  102. Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10:958–66.

    Article  PubMed  CAS  Google Scholar 

  103. Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000;19:2–12.

    Article  PubMed  CAS  Google Scholar 

  104. Jiang H, Gomez-Manzano C, Alemany R, et al. Comparative effect of oncolytic adenoviruses with E1A-55 kDa or E1B-55 kDa deletions in malignant gliomas. Neoplasia 2005;7:48–56.

    Article  PubMed  CAS  Google Scholar 

  105. Jiang H, Gomez-Manzano C, Aoki H, et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 2007;99:1410–4.

    Article  PubMed  CAS  Google Scholar 

  106. Alonso MM, Jiang H, Yokoyama T, et al. Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 2008;16:487–93.

    Article  PubMed  CAS  Google Scholar 

  107. Alonso MM, Gomez-Manzano C, Bekele BN, et al. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 2007;67:11499–504.

    Article  PubMed  CAS  Google Scholar 

  108. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992;256:1550–2.

    Article  PubMed  CAS  Google Scholar 

  109. Oldfield EH, Ram Z, Culver KW, et al. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 1993;4:39–69.

    Article  PubMed  CAS  Google Scholar 

  110. Trask TW, Trask RP, Aguilar-Cordova E, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 2000;1:195–203.

    Article  PubMed  CAS  Google Scholar 

  111. Prados MD, McDermott M, Chang SM, et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J Neurooncol 2003;65:269–78.

    Article  PubMed  Google Scholar 

  112. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000;11:2389–401.

    Article  PubMed  CAS  Google Scholar 

  113. Wildner O, Morris JC, Vahanian NN, et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999;6:57–62.

    Article  PubMed  CAS  Google Scholar 

  114. Nanda D, Vogels R, Havenga M, et al. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001;61:8743–50.

    PubMed  CAS  Google Scholar 

  115. Mesnil M, Piccoli C, Tiraby G, et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996;93:1831–5.

    Article  PubMed  CAS  Google Scholar 

  116. Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF. Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 1998;273:9188–96.

    Article  PubMed  CAS  Google Scholar 

  117. Marconi P, Tamura M, Moriuchi S, et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol Ther 2000;1:71–81.

    Article  PubMed  CAS  Google Scholar 

  118. Hannon GJ. RNA interference. Nature 2002;418:244–51.

    Article  PubMed  CAS  Google Scholar 

  119. Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110:563–74.

    Article  PubMed  CAS  Google Scholar 

  120. Shi N, Zhang Y, Zhu C, et al. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 2001;98:12754–9.

    Article  PubMed  CAS  Google Scholar 

  121. Shi N, Boado RJ, Pardridge WM. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 2001;18:1091–5.

    Article  PubMed  CAS  Google Scholar 

  122. Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S. Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 2008;177:137–50.

    Article  PubMed  CAS  Google Scholar 

  123. Hau P, Jachimczak P, Schlingensiepen R, et al. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007;17:201–12.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004;10:3667–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank David M. Wildrick, Ph.D., for editorial assistance with the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Al-Shamy, G., Sawaya, R. (2009). Novel Therapies for Brain Tumors. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics