Skip to main content

Image Guided Craniotomy for Brain Tumor

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery

Abstract

The application of technology to the surgical resection of intracranial tumors has involved a gradual accretion of instruments and instrument systems ever since such tumors were first successfully removed in the late nineteenth century. This background of gradual improvement has been punctuated by explosions of activity in specific areas that have greatly expanded the boundaries of neurosurgical practice. These include the invention of the bipolar cautery, the introduction of angiography and ventriculography for diagnosis, the advent of the intraoperative microscope, and the development in the 1970s and 1980s of computerized imaging systems such as computed tomography (CT) and magnetic resonance imaging (MRI). The intracranial images that these modalities now provide offer a wealth of anatomical detail and delineate tumor location and tumor extent with precision. The gradual fusion of improved imaging with stereotactic localizers has yielded the latest such revolution, that of neuronavigation. This generic term covers a variety of systems designed to provide technical solutions to the basic problems of (1) Correlating a lesion seen on scan with the anatomical reality of the patient, (2) Obtaining a maximal resection of that lesion, while (3) Breaching normal brain tissue to the smallest degree compatible with an adequate resection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horsley V, Clarke RH. “The structure and function of the cerebellum examined by a new method.” Brain 1906;31:45–124.

    Article  Google Scholar 

  2. Leksell L. “A stereotactic apparatus for intracerebral surgery.” Acta Chir Scan 1949;99:229–33.

    Google Scholar 

  3. Kelly PJ, Kall BA, et al. “Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms.” J Neurosurg 1986;64(3):427–39.

    Article  PubMed  CAS  Google Scholar 

  4. Morita A, Kelly PJ. “Resection of intraventricular tumors via a computer-assisted volumetric stereotactic approach.” Neurosurgery 1993;32:920–6.

    Article  PubMed  CAS  Google Scholar 

  5. Moshel YA, Link MJ, et al. “Stereotactic volumetric resection of thalamic pilocytic astrocytomas.” Neurosurgery 2007;61:66–75.

    Article  PubMed  Google Scholar 

  6. Rezai AR. “Integration of functional brain mapping in image-guided neurosurgery.” Acta Neurochir Suppl 1997;68:85–9.

    PubMed  CAS  Google Scholar 

  7. Roberts DW, Strohbehn JW, et al. “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.” J Neurosurg 1986;65:545–9.

    Article  PubMed  CAS  Google Scholar 

  8. Roberts DW, Hartov A, et al. “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases.” Neurosurgery 1998;43:749–58.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe E, Watanabe T, et al. “Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.” Surg Neurol 1987;27:543–7.

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe E, Mayanagi Y, et al. “Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm.” Neurosurgery 1991;28:792–9.

    Article  PubMed  CAS  Google Scholar 

  11. Golfinos JG, Fitzpatrick BC, et al. “Clinical use of a frameless stereotactic arm: results of 325 cases.” J Neurosurg 1995;83:197–205.

    Article  PubMed  CAS  Google Scholar 

  12. Kleinpeter G, Lothaller C. “Frameless neuronavigation using the ISG-system in practice: from craniotomy to delineation of lesion.” Minim Invasive Neurosurg 2003;46:257–64.

    Article  PubMed  CAS  Google Scholar 

  13. Roessler K, Ungersboeck K, et al. “Frameless stereotactic lesion contour-guided surgery using a computer-navigated microscope.” Surg Neurol 1998;49:282–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kato A, Yoshimoto T, et al. “A frameless, armless navigational system for computer-assisted neurosurgery. Technical note.” J Neurosurg 1991;74(5):845–9.

    Article  PubMed  CAS  Google Scholar 

  15. Heilbrun MP, McDonald P, et al. “Stereotactic localization and guidance using a machine vision technique.” Stereotact Funct Neurosurg 1992;58:94–8.

    Article  PubMed  CAS  Google Scholar 

  16. Heilbrun MP, Koehler S, et al. “Preliminary experience using an optimized three-point transformation algorithm for spatial registration of coordinate systems: a method of noninvasive localization using frame-based stereotactic guidance systems.” J Neurosurg 1994;81(5):676–82.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts DW, Strohbehn JW, et al. “The stereotactic operating microscope: accuracy refinement and clinical experience.” Acta Neurochir Suppl 1989;46:112–4.

    CAS  Google Scholar 

  18. Chen JCT, Moffit K, et al. “Head-mounted display system for microneurosurgery.” Stereotact Funct Neurosurg 1997;68:25–32.

    Article  PubMed  CAS  Google Scholar 

  19. Ray WZ, Barua M, et al. “Anatomic visualization with ultrasound-assisted intracranial image guidance in neurosurgery: a report of 30 patients.” J Am Coll Surg 2004;199(2):338–43.

    Article  PubMed  Google Scholar 

  20. Wu Z, Hartov A, et al. “Multimodal image re-registration via mutual information to account for initial tissue motion during image-guided neurosurgery.” Conf Proc IEEE Eng Med Biol Soc 2004;3:1675–8.

    PubMed  CAS  Google Scholar 

  21. Sun H, Roberts DW, et al. “Cortical surface tracking using a stereotactic operating microscope.” Neurosurgery 2005;56:86–97.

    Article  PubMed  Google Scholar 

  22. Miga MI, Paulsen KD, et al. “Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation.” IEEE Trans Med Imaging 1999;18:866–74.

    Article  PubMed  CAS  Google Scholar 

  23. Comeau RM, Sadikot AF, et al. “Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery.” Med Phys 2000;27:787–800.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts DW, Lunn K, et al. “Intra-operative image updating.” Stereotact Funct Neurosurg 2001;76:148–50.

    Article  PubMed  CAS  Google Scholar 

  25. Roth J, Biyani N, et al. “Real-time neuronavigation with high-quality 3D ultrasound sonowand in pediatric neurosurgery.” Pediatr Neurosurg 2007;43:185–91.

    Article  PubMed  Google Scholar 

  26. Nimsky C, Ganslandt O, et al. “Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.” Neurosurgery 2000;47:1070–9.

    Article  PubMed  CAS  Google Scholar 

  27. Reinges MH, Nguyen HH, et al. “Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation.” Acta Neurochir 2004;146:369–77.

    Article  CAS  Google Scholar 

  28. Wittek A, Miller K, et al. “Patient-specific model of brain deformation: application to medical image registration.” J Biomech 2007;40:919–29.

    Article  PubMed  Google Scholar 

  29. Suess O, Picht T, et al. “Neuronavigation without rigid pin fixation of the head in left frontotemporal tumor surgery with intraoperative speech mapping.” Neurosurgery 2007;60:330–8.

    Article  PubMed  Google Scholar 

  30. Mangano FT, Limbrick DDJ, et al. “Simultaneous image-guided and endoscopic navigation without rigid cranial fixation: application in infants: technical case report.” Neurosurgery 2006;58 4 Suppl 2:ONS–E377.

    Article  PubMed  Google Scholar 

  31. Rygh OM, Nagelhus Hernes TA, et al. “Intraoperative navigated 3-dimensional ultrasound angiography in tumor surgery.” Surg Neurol 2006;66:581–92.

    Article  PubMed  Google Scholar 

  32. Liu H, Hall WA, et al. “The roles of functional MRI in MR-guided neurosurgery in a combined 1.5 Tesla MR-operating room.” Acta Neurochir Suppl 2003;85:127–35.

    PubMed  CAS  Google Scholar 

  33. Stadlbauer A, Moser E, et al. “Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set.” J Neurosurg 2004;101:287–94.

    Article  PubMed  Google Scholar 

  34. Mikuni N, Okada T, et al. “Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors.” J Neurosurg 2007;106(4):593–8.

    Article  PubMed  Google Scholar 

  35. Stadlbauer A, Nimsky C, et al. “Changes in fiber integrity, diffusivity, and metabolism of the pyramidal tract adjacent to gliomas: a quantitative diffusion tensor fiber tracking and MR spectroscopic imaging study.” AJNR Am J Neuroradiol 2007;28:462–9.

    PubMed  CAS  Google Scholar 

  36. Pirotte B, Goldman S, et al. “Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures.” J Neurosurg 2006;104:238–53.

    Article  PubMed  Google Scholar 

  37. Helm PA, Eckel TS. “Accuracy of registration methods in frameless stereotaxis.” Comput Aided Surg 1998;3(2):51–6.

    Article  PubMed  CAS  Google Scholar 

  38. Sawaya R, Hammoud M, et al. “Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors.” Neurosurgery 1998;42(5):1044–55.

    Article  PubMed  CAS  Google Scholar 

  39. Tan TC, McL Black P. “Image-guided craniotomy for cerebral metastases: techniques and outcomes.” Neurosurgery 2003;53(1):82–9.

    Article  PubMed  Google Scholar 

  40. Takahashi M, Yamada R, et al. “Navigation-guided ommaya reservoir placement: implications for the treatment of leptomeningeal metastases.” Minim Invasive Neurosurg 2007;50(6):340–5.

    Article  PubMed  CAS  Google Scholar 

  41. Paleologos TS, Wadley JP, et al. “Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery.” Neurosurgery 2000;47:40–7.

    Article  PubMed  CAS  Google Scholar 

  42. Sanai N, Berger MS. “Glioma extent of resection and its impact on patient outcome.” Neurosurgery 2008;62:753–64.

    Article  PubMed  Google Scholar 

  43. Lacroix M, Abi-Said D, et al. “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival.” J Neurosurg 2001;95:190–8.

    Article  PubMed  CAS  Google Scholar 

  44. Stummer W, Reulen HJ, et al. “Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias.” Neurosurgery 2008;62:564–76.

    Article  PubMed  Google Scholar 

  45. Benveniste R, Germano IM. “Evaluation of factors predicting accurate resection of high-grade gliomas by using frameless image-guided stereotactic guidance”. Neurosurg Focus 2003;14(2):E5.

    Article  PubMed  Google Scholar 

  46. Kurimoto M, Hayashi N, et al. “Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study.” Minim Invasive Neurosurg 2004;47:278–83.

    Article  PubMed  CAS  Google Scholar 

  47. Shirane R, Shamoto H, et al. “Surgical treatment of pineal region tumours through the occipital transtentorial approach: evaluation of the effectiveness of intra-operative micro-endoscopy combined with neuronavigation.” Acta Neurochir 1999;141:801–8.

    Article  CAS  Google Scholar 

  48. Kim IY, Jung S, et al. “Neuronavigation-guided endoscopic surgery for pineal tumors with hydrocephalus.” Minim Invasive Neurosurg 2004;47(6):365–8.

    Article  PubMed  CAS  Google Scholar 

  49. Schroeder HW, Wagner W, et al. “Frameless neuronavigation in intracranial endoscopic neurosurgery.” J Neurosurg 2001;94(1):72–9.

    Article  PubMed  CAS  Google Scholar 

  50. Youssef AS, Keller JT, et al. “Novel application of computer-assisted cisternal endoscopy for the biopsy of pineal region tumors: cadaveric study.” Acta Neurochir 2007;149(4):399–406.

    Article  CAS  Google Scholar 

  51. Dammers R, Haitsma IK, et al. “Safety and efficacy of frameless and frame-based intracranial biopsy techniques.” Acta Neurochir 2008;150(1):23–9.

    Article  CAS  Google Scholar 

  52. Woodworth GF, McGirt MJ, et al. “Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique.” J Neurosurg 2006;104(2):233–7.

    Article  PubMed  Google Scholar 

  53. Engle DJ, Lunsford LD. “Brain tumor resection guided by intraoperative computed tomography.” J Neuro-Oncol 1987;4:361–70.

    Article  CAS  Google Scholar 

  54. Grunert P, Muller-Forell W, et al. “Basic principles and clinical applications of neuronavigation and intraoperative computed tomography.” Comput Aided Surg 1998;3:166–73.

    Article  PubMed  CAS  Google Scholar 

  55. Gumprecht H, Lumenta CB. “Intraoperative imaging using a mobile computed tomography scanner.” Minim Invasive Neurosurg 2003;46:317–22.

    Article  PubMed  CAS  Google Scholar 

  56. Fox WC, Wawrzyniak S, et al. “Intraoperative acquisition of three-dimensional imaging for frameless stereotactic guidance during transsphenoidal pituitary surgery using the Arcadis Orbic System.” J Neurosurg 2008;108:746–50.

    Article  PubMed  Google Scholar 

  57. Martin C, Alexander EI, et al. “Surgical treatment of low-grade gliomas in the intraoperative magnetic resonance imager.” Neurosurg Focus 1998;4(4):E8.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz R, Shamoto H, et al. “Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases.” Radiology 1999;211(2):477–88.

    PubMed  CAS  Google Scholar 

  59. Zimmermann M, Seifert V, et al. “Open MRI-guided microsurgery of intracranial tumours in or near eloquent brain areas.” Acta Neurochir 2001;143:327–37.

    Article  CAS  Google Scholar 

  60. Schulder M, Salas S, et al. “Cranial surgery with an expanded compact intraoperative magnetic resonance images.” J Neurosurg 2006;104:611–7.

    Article  PubMed  Google Scholar 

  61. Bergsneider M, Sehati N, et al. “Extent of glioma resection using low-field (0.2 T) versus high-field (1.5 T) intraoperative MRI and image-guided frameless neuronavigation.” Clin Neurosurg 2005;52:389–99.

    PubMed  Google Scholar 

  62. Hirschberg H, Samset E, et al. “Impact of intraoperative MRI on the surgical results for high-grade gliomas.” Minim Invasive Neurosurg 2005;48:77–84.

    Article  PubMed  CAS  Google Scholar 

  63. Nimsky C, Fujita A, et al. “Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging.” Neurosurgery 2004;55:358–70.

    Article  PubMed  Google Scholar 

  64. Nimsky C, Ganslandt O, et al. “Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking.” Neuroimage 2006;30(4):1219–29.

    Article  PubMed  Google Scholar 

  65. Archip N, Clatz O, et al. “Compensation of geometric distortion effects on intraoperative magnetic resonance imaging for enhanced visualization in image-guided neurosurgery.” Neurosurgery 2008;62 3 Suppl 1:209–15.

    Article  PubMed  Google Scholar 

  66. Chen X, Weigel D, et al. “Diffusion tensor imaging and white matter tractography in patients with brainstem lesions.” Acta Neurochir 2007;149(11):1117–31.

    Article  CAS  Google Scholar 

  67. Nimsky C, Ganslandt O, et al. “Intraoperative high-field MRI: anatomical and functional imaging.” Acta Neurochir Suppl 2006;98:87–95.

    Article  PubMed  CAS  Google Scholar 

  68. Price SJ, Jena R, et al. “Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study.” AJNR Am J Neuroradiol 2006;27(9):1969–74.

    PubMed  CAS  Google Scholar 

  69. Mikuni N, Okada T, et al. “Clinical significance of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of brain tumours in patients with preoperative motor weakness.” J Neurol Neurosurg Psychiatry 2007;78(7):716–21.

    Article  PubMed  Google Scholar 

  70. Mikuni N, Okada T, et al. “Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors.” J Neurosurg 2007;106(1):128–33.

    Article  PubMed  Google Scholar 

  71. Hall WA, Galicich W, et al. “3-Tesla intraoperative MR imaging for neurosurgery.” J Neuro-Oncol 2006;77:297–303.

    Article  Google Scholar 

  72. Nimsky C, von Keller B, et al. “Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas.” Neurosurgery 2006;59(1):105–14.

    Article  PubMed  Google Scholar 

  73. Litofsky NS, Bauer AM, et al. “Image-guided resection of high-grade glioma: patient selection factors and outcome.” Neurosurg Focus 2006;20(4):E16.

    Article  PubMed  Google Scholar 

  74. Willems PW, Taphoorn MJ, et al. “Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial.” J Neurosurg 2006;104:360–8.

    Article  PubMed  Google Scholar 

  75. Gildenberg PL, Labuz J. “Use of a volumetric target for image-guided surgery.” Neurosurgery 2006;59:651–9.

    Article  PubMed  Google Scholar 

  76. Kockro RA, Serra L, et al. “Planning and simulation of neurosurgery in a virtual reality environment.” Neurosurgery 2000;46:118–35.

    Article  PubMed  CAS  Google Scholar 

  77. Anil SM, Kato Y, et al. “Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma.” Minim Invasive Neurosurg 2007;50(2):65–70.

    Article  PubMed  CAS  Google Scholar 

  78. Banerjee PP, Luciano CJ, et al. “Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback.” J Neurosurg 2007;107(3):515–21.

    Article  PubMed  Google Scholar 

  79. Wong GK, Zhu CX, et al. “Craniotomy and clipping of intracranial aneurysm in a stereotactic virtual reality environment.” Neurosurgery 2007;61(3):564–8.

    Article  PubMed  Google Scholar 

  80. Zimmermann M, Krishnan R, et al. “Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results.” Acta Neurochir 2004;146(7):697–704.

    Article  CAS  Google Scholar 

  81. Woerdeman PA, Willems PW, et al. “The analysis of intraoperative neurosurgical instrument movement using a navigation log-file.” Int J Med Robot 2006;2(2):139–45.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

McCutcheon, I.E. (2009). Image Guided Craniotomy for Brain Tumor. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics