Skip to main content

Abstract

Its aim is to impair the capacity of cortical tissue to generate sufficient neuronal synchrony to produce epileptiform discharges, without interfering with its capability to mediate normal physiologic transactions. (Frank Morrell 1989; Figure 161-1 )

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrell F, Whisler WW, Bleck TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 1989;70:231–39.

    Article  PubMed  CAS  Google Scholar 

  2. Morrell F, Hanbery JW. A new surgical technique for the treatment of focal cortical epilepsy. Electroencephalogr Clin Neurophysiol 1969;26:120.

    PubMed  CAS  Google Scholar 

  3. Morrell F, Whisler WW, Smith M, et al. Landau-Kleffner syndrome. Treatment with subpial intracortical transection. Brain 1995;118:1529–46.

    Article  PubMed  Google Scholar 

  4. Morrell F, Hanberry JW. A new surgical technique for the treatment of focal cortical epilepsy. Electroencephalogr Clin Neurophysiol 1969;26:120.

    PubMed  CAS  Google Scholar 

  5. Asanuma H, Sakata H. Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J Neurophysiol 1967;30:35–54.

    Google Scholar 

  6. Asanuma H, Stoney SD, Jr, Abzug C. Relationship between afferent input and motor outflow in car motorsensory cortex. J Neurophysiol 1968;31:670–81.

    PubMed  CAS  Google Scholar 

  7. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962;160(1):106–54.

    PubMed  Google Scholar 

  8. Mountcastle V. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 1957;20:408–34.

    PubMed  CAS  Google Scholar 

  9. Powell T, Mountcastle V. Some aspects of the functional organization of the cortex of the post-central gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkings Hosp 1959;105:133–62.

    CAS  Google Scholar 

  10. Lueders H, Bustamante L, Zablow L, et al. The independence of closely spaced discrete experimental spike foci. Neurology 1981;31:846–51.

    PubMed  CAS  Google Scholar 

  11. Lueders H, Bustamante L, Zablow L, et al. Quantitative studies of spike foci induced by minimal concentrations of penicillin. Electroencephalogr Clin Neurophysiol 1980;48:80–9.

    Article  PubMed  CAS  Google Scholar 

  12. Reichental E, Hocherman S. The critical cortical area for the development of penicillin-induced epilepsy. Electroencephalogr Clin Neurophysiol 1977;42:248–51.

    Article  Google Scholar 

  13. Tharp B. The penicillin focus: a study of field characteristics using cross-correlation analysis. Electroencephalogr Clin Neurophysiol 1971;31:45–55.

    Article  PubMed  CAS  Google Scholar 

  14. Dichter M, Spencer W. Penicillin-induced interictal discharges from cat hippocampus. II. Mechanisms underlying origin and restriction. J Neurophysiol 1969;32:663–87.

    PubMed  CAS  Google Scholar 

  15. Dichter M, Spencer W. Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J Neurophysiol 1969;32:649–62.

    PubMed  CAS  Google Scholar 

  16. Goldensohn E, Zablow L, Salazar A. The penicillin focus I: distribution of potential at the cortical surface. Electroencephalogr Clin Neurophysiol 1977;42:480–92.

    Article  PubMed  CAS  Google Scholar 

  17. Chervin R, Pierce P, Connors B. Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J Neurophysiol 1988;60:1695–713.

    PubMed  CAS  Google Scholar 

  18. Telfeian A, Connors B. Layer-specific pathways for the horizontal propagation of epileptiform discharges in the neocortex. Epilepsia 1998;39:700–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ebersole J, Chatt A. The laminar susceptibility of cat visual cortex to penicillin induced epileptogenesis. Neurology 1980;30.

    Google Scholar 

  20. Connors B. Initiation of synchronized neuronal bursting in neocortex. Nature 1984;310:685–7.

    Article  PubMed  CAS  Google Scholar 

  21. Schramm J, Aliashkevich AF, Grunwald T. Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 2002;97:39–47.

    Article  PubMed  Google Scholar 

  22. Smith M. Multiple subpial transection in patients with extratemporal epilepsy. Epilepsia 1998;39:S81–9.

    Article  PubMed  Google Scholar 

  23. Lui L, Zhao Q, Li S, et al. Multiple subpial transection for treatment of intractable epilepsy. Chin Med J 1995;108:539–41.

    Google Scholar 

  24. Whisler WW. Multiple subpial transection. Tech Neurosurg 1995;1:40–4.

    Google Scholar 

  25. Tellez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005;128:1188–98.

    Article  PubMed  Google Scholar 

  26. Spencer SS, Schramm J, Wyler A, et al. Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 2002;43:141–5.

    Article  PubMed  Google Scholar 

  27. Guenot M. [Surgical treatment of epilepsy: outcome of various surgical procedures in adults and children]. Rev Neurol (Paris) 2004;160 Spec No 1:5S241–50.

    Google Scholar 

  28. Liu Z, Zhao Q, Tian Z, et al. Multiple subpial transection for treatment of intractable epilepsy. Chin Med J 1995;108:539–541.

    PubMed  CAS  Google Scholar 

  29. Mulligan LP, Spencer DD, Spencer SS. Multiple subpial transections: the Yale experience. Epilepsia 2001;42:226–9.

    PubMed  CAS  Google Scholar 

  30. Pacia SV, Devinsky O, Perrine K, et al. Multiple subpial transections for intractable partial seizure: seizures outcome. J Epilepsy 1997;10:86–91.

    Article  Google Scholar 

  31. Rougier A, Sundstrom L, Claverie B, et al. Multiple subpial transection: report of 7 cases. Epilepsy Res 1996;24:57–63.

    Article  PubMed  CAS  Google Scholar 

  32. Sawhney IM, Robertson IJ, Polkey CE, Binnie CD, Elwes RD. Multiple subpial transection: a review of 21 cases. J Neurol Neurosurg Psychiatry 1995;58:344–9.

    Article  PubMed  CAS  Google Scholar 

  33. Benifla M, Otsubo H, Ochi A, et al. Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 2006;22:992–8.

    Article  PubMed  Google Scholar 

  34. Blount JP, Langburt W, Otsubo H, et al. Multiple subpial transections in the treatment of pediatric epilepsy. J Neurosurg 2004;100:118–24.

    PubMed  Google Scholar 

  35. Wyler AR. Multiple subpial transections in neocortical epilepsy: Part II. Adv Neurol 2000;84:635–42.

    PubMed  CAS  Google Scholar 

  36. Buelow J, Aydelott P, Pierz D, et al. Multiple subpial transections for Landau-Kleffner Syndrome. AORN J 1996;63:727–39.

    Article  PubMed  CAS  Google Scholar 

  37. Neville BG, Harkness WF, Cross JH, et al. Surgical treatment of severe autistic regression in childhood epilepsy. Pediatr Neurol 1997;16:137–40.

    Article  PubMed  CAS  Google Scholar 

  38. Nass R, Gross A, Wisoff J, et al. Outcome of multiple subpial transections for autistic epileptiform regression. Pediatr Neurol 1999;21:464–70.

    Article  PubMed  CAS  Google Scholar 

  39. Irwin K, Birch V, Lees J, et al. Multiple subpial transections in Landau-Kleffner syndrome. Dev Med Child Neurol 2001;43:248–52.

    Article  PubMed  CAS  Google Scholar 

  40. Grote CL, Van Slyke P, Hoeppner JA. Language outcome following multiple subpial transections for Landau-Kleffner syndrome. Brain 1999;122:561–6.

    Article  PubMed  Google Scholar 

  41. Otsubo H, Chitoku S, Ochi A, et al. Malignant rolandic-sylvian epilepsy in children: Diagnosis, treatment and outcomes. Neurology 2001;57:590–6.

    PubMed  CAS  Google Scholar 

  42. Molyneux PD, Barker RA, Thom M, et al. Successful treatment of intractable epilepsia partialis continua with multiple subpial transections. J Neurol Neurosurg Psychiatry 1998;65:137–8.

    Article  PubMed  CAS  Google Scholar 

  43. Nakken KO, Eriksson AS, Kostov H, et al. [Epilepsia partialis continua (Kojevnikov’s syndrome)]. Tidsskr Nor Laegeforen 2005;125:746–9.

    PubMed  Google Scholar 

  44. Otsubo H, Oishi M, Snead OC, III. 2007. Magnetoencephalography. In: Miller J, Silbergeld D, editors. Epilepsy surgery: principles and controversies neurological disease and theraphy. Mercel Decker; New York: p. 752–67.

    Google Scholar 

  45. Morrell F, Whisler W, Bleck T. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 1989;70:231–9.

    Article  PubMed  CAS  Google Scholar 

  46. Wennberg R, Quesney L, Lozano A, et al. Role of electrocorticography at surgery for lesion-related frontal lobe epilepsy. Can J Neurol Sci 1999;26:33–9.

    PubMed  CAS  Google Scholar 

  47. Shimizu H, Suzuki I, Ishijima B, et al. Multiple subpial transections (MST) for the control of seizures that originated in unresectable cortical foci. Jpn J Psychiatry Neurol 1991;45:354–6.

    PubMed  CAS  Google Scholar 

  48. Hufnagel A, Zentner J, Fernandez G, et al. Multiple subpial transections for control of epileptic seizures: effectiveness and safety. Epilepsia 1997;38:678–88.

    Article  PubMed  CAS  Google Scholar 

  49. Patil AA, Andrews R, Torkelson R. Isolation of dominant seizure foci by multiple subpial transections. Stereotact Funct Neurosurg 1997;69:210–5.

    Article  PubMed  CAS  Google Scholar 

  50. Hashizume K, Tanaka T. Multiple subpial transection in kainic acid-induced focal cortical seizure. Epilepsy Res 1998;32:389–99.

    Article  PubMed  CAS  Google Scholar 

  51. Patil AA, Andrews RV, Torkelson R. Surgical treatment of intractable seizures with multilobar or bihemispheric seizure foci (MLBHSF). Surg Neurol 1997;47:72–7; discussion 77–8.

    Article  PubMed  CAS  Google Scholar 

  52. Kaufmann WE, Krauss GL, Uematsu S, et al. Treatment of epilepsy with multiple subpial transections: an acute histologic analysis in human subjects. Epilepsia 1996;37:342–52.

    Article  PubMed  CAS  Google Scholar 

  53. Engel J, Van Ness P, Rasmussen T, et al. Outcome with respect to epileptic seizures. In: J E editor. Surgical treatment of the epilepsies. New York: Raven Press; 1993. p. 609–21.

    Google Scholar 

  54. Orbach D, Romanelli P, Devinsky O, et al. Late seizure recurrence after multiple subpial transections. Epilepsia 2001;42:1316–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tovar-Spinoza, Z.S., Rutka, J.T. (2009). Subpial Transection. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics