Skip to main content
  • 279 Accesses

Abstract

The field of magnetoencephalography (MEG) began in 1968 when Cohen used a 1-million-turn single induction coil to measure human alpha activity [1]. MEG was first applied to epilepsy by Barth et al. recording interictal spike discharges using a one-channel MEG sensor in two patients with partial seizures [2]. By 1989, multi-channel MEG sensors (37-channels) covering a relatively large region of the scalp were commercially available, making the clinical application of MEG efficient for patients with epilepsy. Currently all MEG machines are whole-head style and effectively cover most of the brain, making detection of intracerebral epileptic discharges feasible on a routine basis. This chapter describes basic physiology of MEG, characteristics of MEG spike sources, diagnosis of epilepsy, and epilepsy surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science 1968;161:784–6.

    Article  PubMed  CAS  Google Scholar 

  2. Barth DS, Suthering W, Engel J, Jr, Beatty J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science 1982;218:891–4.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 1972;175:664–6.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmerman JE, Thiene P, Harding JT. Design and operation of stable rf-biased superconducting quantum interference devices and a note on the properties of perfectly clean metal contacts. J Appl Phys 1970;41:1572–80.

    Article  Google Scholar 

  5. Lewine JD, Orrison WW. Magnetoencephalography and magnetic source imaging. In: Orrison WW, Lewine JA, Hartshorne MF, editors. Functional brain imaging. St. Louis, MO: Mosby Year Book, Inc; 1995. p. 369–417.

    Google Scholar 

  6. Hari R. The neuromagnetic method in the study of the human auditory cortex. Adv Audiol 1990;6:222–82.

    Google Scholar 

  7. Hämäläinen MS. Magnetoencephalography-thery, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993;65:413–97.

    Article  Google Scholar 

  8. Baumgartner C, Barth DS, Levesque MF, Sutherling WW. Detection of epileptiform discharges on magnetoencephalography in comparison to invasive measurements. In: Hoke M, Erne SN, Okada YC, Romani GL, editors. Biomagnetism: clinical aspects. Amsterdam: Elsevier; 1992. p. 67–71.

    Google Scholar 

  9. Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J, Kikuchi H, Shibasaki H. Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. Neuroimage 1997;5:298–306.

    Article  PubMed  CAS  Google Scholar 

  10. Oishi M, Otsubo H, Kameyama S, Morota N, Masuda H, Kitayama M, Tanaka R. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 2002;43:1390–5.

    Article  PubMed  Google Scholar 

  11. Shigeto H, morioka T, hisada K, Nishio S, Ishibashi H, Kira D, Tobimatsu S, Kato M. Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recordeing of magnetic fields and electrocorticography. Neurol Res 2002;24:531–6.

    Article  PubMed  Google Scholar 

  12. Abraham K, Ajmone Marsan C. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr Clin Neurophysiol 1958;10:447–61.

    Article  PubMed  CAS  Google Scholar 

  13. Cooper R, Winter AL, Crow HJ, Walter WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol 1965;18:217–28.

    Article  PubMed  CAS  Google Scholar 

  14. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 2005;46:669–76.

    Article  PubMed  Google Scholar 

  15. Brodmann K. Vergleichende Localisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig, Barth JA 1909;XII:324.reprinted 1925

    Google Scholar 

  16. Sato S, Balish M, Muratore R. Principles of magnetoencephalography. J Clin Neurophysiol 1991;8:144–56.

    Article  PubMed  CAS  Google Scholar 

  17. Merlet I, Paetau R, Garcia-Larrea L, Uutela K, Granströ ML, Mauguière. Apparent asynchrony between interictal electric and magnetic spikes. Neuroreport 1997;8:1071–6.

    Article  PubMed  CAS  Google Scholar 

  18. Gallen CC, Hirschkoff EC, Buchanan DC. Magnetoencephalography and magnetic source imaging. Neuroimaging Clin N Am 1995:5:227–49.

    PubMed  CAS  Google Scholar 

  19. Gallen CC, Sobel DF, Waltz T, Aung M, Copeland B, Schwartz BJ, Hirschkoff EC, Bloom FE. Noninvasive presurgical neuromagnetic mapping of somatosensory cortex. Neurosurgery 1993;33:260–8.

    Article  PubMed  CAS  Google Scholar 

  20. Pataraia E, Simos PG, Castillo EM, Billingsley RL, Sarkari S, Wheless JW, Maggio V, Maggio W, Baumgartner JE, Swank PR, Breier JI, Papanicolaou AC. Does magnetoencephalography add to scalp video-EEG as a diagnostic tool in epilepsy surgery? Neurology 2004;23(62):943–8.

    Google Scholar 

  21. Iida K, Otsubo H, Matsumoto Y, Ochi A, Oishi M, Holowka S, Pang E, Elliott I, Weiss SK, Chuang SH, Snead OC, III, Rutka JT. Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg (Pediatrics 2) 2005;2S:187–96.

    Article  Google Scholar 

  22. Fischer MJ, Scheler G, Stefan H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 2005;128:153–7.

    Article  PubMed  Google Scholar 

  23. Oishi M, Kameyama S, Masuda H, Tohyama J, Kanazawa O, Sasagawa M, Otsubo H. Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia 2006;47:355–64.

    Article  PubMed  Google Scholar 

  24. Knowlton RC, Elgavish R, Howell J, Blount J, Burneo JG, Faught E, Kankirawatana P, Riley K, Morawetz R, Worthington J, Kuzniecky RI. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 2006;59:835–42.

    Article  PubMed  Google Scholar 

  25. Mohamed IS, Otsubo H, Ochi A, Elliott I, Donner E, Chuang S, Sharma R, Holowka S, Rutka J, Snead OC, III. Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia 2007;48:2150–9.

    Article  PubMed  Google Scholar 

  26. RamachandranNair R, Otsubo H, Shroff MM, Ochi A, Weiss SK, Rutka JT, Snead OC, III. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 2007;48:149–57.

    Article  PubMed  Google Scholar 

  27. Commission on classification and terminology of the international league against epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989;30:389-99.

    Google Scholar 

  28. Jasper HH, Kershman J. Electroencephalographic classification of the epilepsies. Arch Neurol Psychiat (Chicago) 1941;45:903–43.

    Google Scholar 

  29. Sakurai K, Tanaka N, Kamada K, Takeuchi F, Takeda Y, Koyama T. Magnetoencephalographic studies of focal epileptic activity in three patients with epilepsy suggestive of Lennox-Gastaut syndrome. Epileptic Disord 2007;9:158–63.

    PubMed  Google Scholar 

  30. Hattori H, Yamano T, Tsutada T, Tsuyuguchi N, Kawawaki H, Shimogawara M. Magnetoencephalography in the detection of focal lesions in West syndrome. Brain Dev 2001;23:528–32.

    Article  PubMed  CAS  Google Scholar 

  31. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J neurosci 2002;22:1480–95.

    PubMed  CAS  Google Scholar 

  32. Niedermyer E, Lopes da Silva FH. Electroencephalography: basic principle, clinical applications and related fields. 5th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2005.

    Google Scholar 

  33. Shiraishi H, Ahlfors SP, Stufflebeam SM, Takano K, Okajima M, Knake S, Hatanaka K, Kohsaka S, Saitoh S, Dale AM, Halgren E. Application of magnetoencephalography in epilepsy patients with widespread spike or slow-wave activity. Epilepsia 2005;46:1264–72.

    Article  PubMed  Google Scholar 

  34. Hara K, Lin FH, Camposano S, Foxe DM, Grant PE, Bourgeois BF, Ahlfors SP, Stufflebeam SM. Magnetoencephalographic mapping of interictal spike propagation: a technical and clinical report. Am J Neuroradiol 2007;28:1486–8.

    Article  PubMed  CAS  Google Scholar 

  35. Morioka T, Nishio S, Ishibashi H, Muranishi M, Hisada K, Shigeto H, Yamamoto T, Fukui M. Intrinsic epileptogenicity of focal cortical dysplasia as revealed by magnetoencephalography and electrocorticography. Epilepsy Res 1999;33:177–87.

    Article  PubMed  CAS  Google Scholar 

  36. Otsubo H, Ochi A, Elliott I, Chuang SH, Rutka JT, Jay V, Aung M, Sobel DF, Snead OC. MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases. Epilepsia 2001;42:1523–30.

    Article  PubMed  CAS  Google Scholar 

  37. Awad IA, Rosenfeld J, Ahl J, Hahn JF, Lüders H. Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 1991;32:179–86.

    Article  PubMed  CAS  Google Scholar 

  38. Palmini A, Gambardella A, Andermann F, Dubeau F, da Costa JC, Olivier A, Tampieri D, Gloor P, Quesney F, Andermann E, Paglioli E, Paglioli-Neto E, Coutinho L, Leblanc K, Kim HI. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995;37:476–87.

    Article  PubMed  CAS  Google Scholar 

  39. Otsubo H, Iida K, Okuda C, Ochi A, Pang E, Weiss SK, Chuang S, Rutka JT, Snead OC, III. Neurophysioligic findings of neuronal migration disorders: intrinsic epileptogenicity of focal cortical dysplasia on electroencephalography, electrocorticography, and magnetoencephalography. J Child Neurol 2005;20:357–63.

    Article  PubMed  Google Scholar 

  40. Iida K, Otsubo H, Mohamed IS, Okuda C, Ochi A, Weiss SK, Chuang SH, Snead OC, III. Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia 2005;46:1510–7.

    Article  PubMed  Google Scholar 

  41. Wu JY, Sutherling WW, Koh S, Salamon N, Jonas R, Yudovin S, Sankar R, Shields WD, Mathern GW. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 2006;66:1270–2.

    Article  PubMed  CAS  Google Scholar 

  42. Jansen FE, Huiskamp G, van Huffelen AC, Bourex-Swart M, Boere E, Gebbink T, Vincken KL, van Nieuwenhuizen O. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 2006;47:108–14.

    Article  PubMed  Google Scholar 

  43. Jansen FE, Van Huffelen AC, Van Rijen PC, Leijten FS, Jennekens-Schinkel A, Gosselaar P, Van Nieuwenhuizen O. Dutch collaborative epilepsy programme. Epilepsy surgery in tuberous sclerosis: the Dutch experience. Seizure 2007;16:445–53.

    Article  PubMed  CAS  Google Scholar 

  44. Xiao Z, Xiang J, Holowka S, Hunjan A, Sharma R, Otsubo H, Chuang S. Volumetric localization of epileptic activities in tuberous sclerosis using sysnthetic aperture magnetometry. Pediatr Radiol 2006;36:16–21.

    Article  PubMed  Google Scholar 

  45. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M., Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998;51:1256–62.

    PubMed  CAS  Google Scholar 

  46. Hong KS, Lee SK, Kim JY, Lee DS, Chung CK. Pre-surgical evaluation and surgical outcome of 41 patients with non-lesional neocortical epilepsy. Seizure 2002;11:184–92.

    Article  PubMed  Google Scholar 

  47. Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 2005;58:525–32.

    Article  PubMed  Google Scholar 

  48. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M. EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 2004;45:621–31.

    Article  PubMed  Google Scholar 

  49. Chitoku S, Otsubo H, Ichimura T, Saigusa T, Ochi A, Shirasawa A, Kamijo K, Yamazaki T, Pang E, Rutka JT, Snead OC, III. Characteristics of dipoles in clustered individual spikes and averaged spikes. Brain and Development 2003;25:14–21.

    Article  PubMed  Google Scholar 

  50. Romani GL, Rossini P. Neuromagnetic functional localization: principles, state of the art, and perspectives. Brain Topogr 1988;1:5–21.

    Article  PubMed  CAS  Google Scholar 

  51. Scherg M. Functional imaging and localization of electromagnetic brain activity. Brain Topogr 1992;5:103–11.

    Article  PubMed  CAS  Google Scholar 

  52. Scherg M, Ebersole JS. Models of brain sources. Brain Topogr 1993;5:419–23.

    Article  PubMed  CAS  Google Scholar 

  53. Alarcon G, Guy CN, Binnie CD, Walker SR, Elwes RDC, Polkey CE. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localization. J Neurol Neurosurg Psychiatry 1994;57:435–49.

    Article  PubMed  CAS  Google Scholar 

  54. Spencer SS. Neural networks in human epilepsy: evidence and implications for treatment. Epilepsia 2002;43:219–27.

    Article  PubMed  Google Scholar 

  55. Hashizume A, Iida K, Shirozu H, Hanaya R, Kiura Y, Kurisu K, Otsubo H. Gradient magnetic-field topography for dynamic changes of epileptic discharges. Brain Res 2007;1144:175–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ebersole JS. Defining epileptogenic foci: past, present, future. J Clin Neuophysiol 1997;14:470–83.

    Article  CAS  Google Scholar 

  57. Ebersole JS. Classification of MEG spikes in temporal lobe epilepsy. In: Yoshimoto T, Kotani M, Kuriki S,Karibe H, Nakasato N, editors. Recent advances in biomagnetism. Sendai: Tohoku University Press; 1999. p. 758–61.

    Google Scholar 

  58. Pataraia E, Lindinger G, Deecke L, Mayer D, Baumgartner C. Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. Neuroimage 2005;24:607–14.

    Article  PubMed  Google Scholar 

  59. Iwasaki M, Nakasato N, Shamoto H, Nagamatsu K, Kanno A, Hatanaka K, Yoshimoto T. Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy. Epilepsia 2002;43:415–24.

    Article  PubMed  Google Scholar 

  60. Imai K, Otsubo H, Sell E, Mohamed I, Ochi A, RamachandranNair R, Snead OC, III. MEG source estimation from mesio-basal temporal areas in a child with a porencephalic cyst. Acta Neurol Scand 2007;116:263–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fujimoto, A., Akiyama, T., Otsubo, H. (2009). MEG in Epilepsy. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_158

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_158

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics