Skip to main content

Abstract

First coined by Hermann Oppenheim in 1911, dystonia is a neurological disorder which manifests as sustained muscle contractions that frequently cause twisting and repetitive movements or abnormal postures. Dystonia can be classified by etiology (primary and secondary), age (early and late onset), and affected body region (focal, multi-focal, segmental, hemidystonia and generalized). When the cause is genetic or not recognized, the dystonia is considered to be primary but when the cause is identifiable (as in the case of stroke, brain trauma, or metabolic disease), it is referred to as secondary [1,2]. The majority of people with generalized dystonia first exhibit symptoms in childhood and adolescence that progressively worsen within the first 5 years after onset, and then remain affected throughout their lifetime [3]. Patients with cervical dystonia or spasmodic torticollis tend to develop the disorder later in life and while it may spread to adjacent body parts in some patients it is more likely not to generalize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 1998;78:1–10.

    PubMed  CAS  Google Scholar 

  2. Tarsy D, Simon DK. Dystonia. N Engl J Med 2006;355(8):818–29.

    PubMed  CAS  Google Scholar 

  3. Greene PE, Kang UJ, Fahn S. Spread of symptoms in idiopathic torsion dystonia. Mov Disord 1995;10:143–52.

    PubMed  CAS  Google Scholar 

  4. Ozelius LJ, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997;17:40–48.

    PubMed  CAS  Google Scholar 

  5. Khan NL, Wood NW, Bhatia KP. Autosomal recessive, DYT2-like primary torsion dystonia: A new family. Neurology 2003;61(12):1801–3.

    PubMed  Google Scholar 

  6. Nolte D, Niemann S, Muller U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc Natl Acad Sci USA 2003;100(18):10347–52.

    PubMed  CAS  Google Scholar 

  7. Gibb WR, Kilford L, Marsden CD. Severe generalized dystonia associated with a mosaic pattern of striatal gliosis. Mov Disord 1992;7(3):217–23.

    PubMed  CAS  Google Scholar 

  8. Miller LG, Jankovic J. Sulpiride-induced tardive dystonia. Mov Disord 1990;5:83–84.

    PubMed  CAS  Google Scholar 

  9. Alarcon F, et al. Post-stroke movement disorders: report of 56 patients. J Neurol Neurosurg Psychiatry 2004;75(11):1568–74.

    PubMed  CAS  Google Scholar 

  10. Munchau A, et al. Unilateral lesions of the globus pallidus: report of four patients presenting with focal or segmental dystonia. J Neurol Neurosurg Psychiatry 2000;69(4):494–8.

    PubMed  CAS  Google Scholar 

  11. Frucht S, Fahn S, Ford B. Focal task-specific dystonia induced by peripheral trauma. Mov Disord 2000;15(2):348–50.

    PubMed  CAS  Google Scholar 

  12. Lee MS, et al. Dystonia after head trauma. Neurology 1994;44:1374–78.

    PubMed  CAS  Google Scholar 

  13. Jankovic J, Tintner R. Dystonia and parkinsonism. Parkinsonism Relat Disord 2001;8:109–121.

    PubMed  CAS  Google Scholar 

  14. Frucht S, Fahn S, Ford B. French horn embouchure dystonia. Mov Disord 1999;14(1):171–3.

    PubMed  CAS  Google Scholar 

  15. Frucht SJ. Focal task-specific dystonia in musicians. Adv Neurol 2004;94:225–30.

    PubMed  Google Scholar 

  16. Hallett M. Pathophysiology of writer’s cramp. Hum Mov Sci 2006;25(4–5):454–63.

    PubMed  Google Scholar 

  17. Marsden CD, et al. The anatomical basis of symptomatic hemidystonia. Brain 1985;108(Pt 2):463–483.

    PubMed  Google Scholar 

  18. Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord 2002;17 Suppl 3:S49–62.

    PubMed  Google Scholar 

  19. Wichmann T, DeLong MR. Physiology of the basal ganglia and pathophysiology of movement disorders of basal ganglia origin. In: Watts RL, Koller WC, eds. Movement Disorders: Neurologic principles and practice. New York: McGraw-Hill, 1997; 87–97.

    Google Scholar 

  20. Hallett M. The neurophysiology of dystonia. Arch Neurol 1998;55:601–603.

    PubMed  CAS  Google Scholar 

  21. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50(4):381–425.

    PubMed  CAS  Google Scholar 

  22. Garraux G, et al. Changes in brain anatomy in focal hand dystonia. Ann Neurol 2004;55(5):736–9.

    PubMed  Google Scholar 

  23. Lenz FA, Byl NN. Reorganization in the cutaneous core of the human thalamic principal somatic sensory nucleus (Ventral caudal) in patients with dystonia. J Neurophysiol 1999;82:3204–3212.

    PubMed  CAS  Google Scholar 

  24. Alexander G, Delong M, Strick P. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357–81.

    PubMed  CAS  Google Scholar 

  25. Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 1996;6:751–58.

    PubMed  CAS  Google Scholar 

  26. Kemp JM, Powell TP. The cortico-striate projection in the monkey. Brain 1970;93(3):525–46.

    PubMed  CAS  Google Scholar 

  27. Kunzle H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in macaca fascicularis. Brain Res 1975;88:195–209.

    PubMed  CAS  Google Scholar 

  28. Kunzle H. Projections from the primary somatosensory cortex to basal ganglia and thalmus in the monkey. Exp Brain Res 1977;30:481–92.

    PubMed  CAS  Google Scholar 

  29. Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000;123(Pt 9):1767–83.

    PubMed  Google Scholar 

  30. Parent M, Parent A. The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 2004;10(4):203–11.

    PubMed  Google Scholar 

  31. Uno M, Yoshida M. Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res 1975;99:377–80.

    PubMed  CAS  Google Scholar 

  32. Ilinsky I, Kultas-Ilinsky K. Sagittal cytoarchitectonic maps of the macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol 1987;262:331–64.

    PubMed  CAS  Google Scholar 

  33. Schell GR, Strick PL. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 1984;4:539–560.

    PubMed  CAS  Google Scholar 

  34. Jones EG, et al. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 1977;173:53–80.

    PubMed  CAS  Google Scholar 

  35. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science 1993;259:819–21.

    PubMed  CAS  Google Scholar 

  36. Kievit J, Kuypers HG. Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res 1975;85(2):261–6.

    PubMed  CAS  Google Scholar 

  37. Sadikot AF, Parent A, Francois C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 1992;315:137–59.

    PubMed  CAS  Google Scholar 

  38. Sidibe M, Smith Y. Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol 1996;365:445–65.

    PubMed  CAS  Google Scholar 

  39. Ilinsky I, Jouandet ML, Goldman-Rakic PS. Organization of the nigrothalamocortical system of the rhesus monkey. J Comp Neurol 1985;236:315–30.

    PubMed  CAS  Google Scholar 

  40. Harnois C, Filion M. Pallidofugal projections to the thalalmus and midbrain: A quantitative antidromic activation study in monkeys and cats. Exp Brain Res 1982;47:277–85.

    PubMed  CAS  Google Scholar 

  41. Parent A, De Bellefeuille L. Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 1982;245:201–213.

    PubMed  CAS  Google Scholar 

  42. Oka H, Jinnai K. Common projection of the motor cortex to the caudate nucleus and the cerebellum. Exp Brain Res 1978;31:31–42.

    PubMed  CAS  Google Scholar 

  43. Vitek JL, Giroux M. Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol 2000;47:S131–140.

    PubMed  CAS  Google Scholar 

  44. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75.

    PubMed  CAS  Google Scholar 

  45. Alexander G, Crutcher M. Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 1990;13:266–71.

    PubMed  CAS  Google Scholar 

  46. Mink JW. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003;60:1365–68.

    PubMed  Google Scholar 

  47. de Carvalho Aguiar PM, Ozelius LJ. Classification and genetics of dystonia. Lancet Neurol 2002;1(5):316–25.

    PubMed  Google Scholar 

  48. McNaught KS, et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol 2004;56(4):540–7.

    PubMed  CAS  Google Scholar 

  49. Carbon M, et al. Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann Neurol 2004;56(2):283–6.

    PubMed  CAS  Google Scholar 

  50. Eidelberg D, et al. Functional brain networks in DYT1 dystonia. Ann Neurol 1998;44:303–312.

    PubMed  CAS  Google Scholar 

  51. Eidelberg D, et al. The metabolic topography of idiopathic torsion dystonia. Brain 1995;118(Pt 6):1473–1484.

    PubMed  Google Scholar 

  52. Hutchinson M, et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 2000;55(5):673–7.

    PubMed  CAS  Google Scholar 

  53. Trost M, et al. Primary dystonia: is abnormal functional brain architecture linked to genotype? Ann Neurol 2002;52(6):853–6.

    PubMed  Google Scholar 

  54. Ceballos-Baumann AO, et al. Overactive prefrontal and underactive motor cortical areas in idiopathic dystonia. Ann Neurol 1995;37:363–372.

    PubMed  CAS  Google Scholar 

  55. Playford ED, et al. Increased activation of frontal areas during arm movement in idiopathic torsion dystonia. Mov Disord 1998;13(2):309–18.

    PubMed  CAS  Google Scholar 

  56. Greene PE, Bressman S. Exteroceptive and interoceptive stimuli in dystonia. Mov Disord 1998;13:549–551.

    PubMed  CAS  Google Scholar 

  57. Kaji R, et al. Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neurol 1995;38(2):155–62.

    PubMed  CAS  Google Scholar 

  58. Ibanez V, et al. Deficient activation of the motor cortical network in patients with writer’s cramp. Neurology 1999;53(1):96–105.

    PubMed  CAS  Google Scholar 

  59. Oga T, et al. Abnormal cortical mechanisms of voluntary muscle relaxation in patients with writer's cramp: an fMRI study. Brain 2002;125:895–903.

    PubMed  CAS  Google Scholar 

  60. Pujol J, et al. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. Neuroimage 2000;12(3):257–67.

    PubMed  CAS  Google Scholar 

  61. Ceballos-Baumann AO, et al. Botulinum toxin does not reverse the cortical dysfunction associated with writer’s cramp. A PET study. Brain 1997;120(Pt 4):571–82.

    PubMed  Google Scholar 

  62. Stoessl AJ, et al. PET studies of cerebral glucose metabolism in idiopathic torticollis. Neurology 1986;36:653–657.

    PubMed  CAS  Google Scholar 

  63. Burton K, et al. Lesions of the putamen and dystonia: CT and magnetic resonance imaging. Neurology 1984;34:962–965.

    PubMed  CAS  Google Scholar 

  64. Fross RD, et al. Lesions of the putamen: their relevance to dystonia. Neurology 1987;37(7):1125–9.

    PubMed  CAS  Google Scholar 

  65. Marsden CD, et al. The anatomical basis of symptomatic hemidystonia. Brain 1985;108:463–83.

    PubMed  Google Scholar 

  66. Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994;117(Pt 4):859–76.

    PubMed  Google Scholar 

  67. Burns LH, et al. Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience 1995;64(4):1007–17.

    PubMed  CAS  Google Scholar 

  68. Black KJ, Ongur D, Perlmutter JS. Putamen volume in idiopathic focal dystonia. Neurology 1998;51:819–824.

    PubMed  CAS  Google Scholar 

  69. Magyar-Lehmann S, et al. Cerebral glucose metabolism in patients with spasmodic torticollis. Mov Disord 1997;12:704–8.

    PubMed  CAS  Google Scholar 

  70. Levy LM, Hallett M. Impaired brain GABA in focal dystonia. Ann Neurol 2002;51(1):93–101.

    PubMed  CAS  Google Scholar 

  71. Blood AJ, et al. Basal ganglia activity remains elevated after movement in focal hand dystonia. Ann Neurol 2004;55(5):744–8.

    PubMed  Google Scholar 

  72. Carbon M, et al. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology 2004;62:1384–1390.

    PubMed  CAS  Google Scholar 

  73. Albin RL, et al. Diminished striatal [123I]iodobenzovesamicol binding in idiopathic cervical dystonia. Ann Neurol 2003;53(4):528–32.

    PubMed  Google Scholar 

  74. Graveland GA, Williams RS, DiFiglia M. A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 1985;234:317–333.

    PubMed  CAS  Google Scholar 

  75. Aosaki T, Kimura M, Graybiel AM. Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 1995;73:1234–52.

    PubMed  CAS  Google Scholar 

  76. Raz A, et al. Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 1996;76(3):2083–8.

    PubMed  CAS  Google Scholar 

  77. Pisani A, et al. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 2007;30(10):545–53.

    PubMed  CAS  Google Scholar 

  78. Pisani A, et al. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol Dis 2006;24(2):318–25.

    PubMed  CAS  Google Scholar 

  79. Hamann M, et al. Acetylcholine receptor binding and cholinergic interneuron density are unaltered in a genetic animal model of primary paroxysmal dystonia. Brain Res 2006;1099(1):176–82.

    PubMed  CAS  Google Scholar 

  80. Gernert M, et al. Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 2000;20(18):7052–8.

    PubMed  CAS  Google Scholar 

  81. Hamann M, et al. Age-related changes in parvalbuminpositive interneurons in the striatum, but not in the sensorimotor cortex in dystonic brains of the dt(sz) mutant hamster. Brain Res 2007;1150:190–9.

    PubMed  CAS  Google Scholar 

  82. Bennay M, Gernert M, Richter A. Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dt(SZ) mutants. J Neurosci 2001;21(13):RC153.

    PubMed  CAS  Google Scholar 

  83. Yamada H, Fujimoto K, Yoshida M. Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res 1995;677:333–36.

    PubMed  CAS  Google Scholar 

  84. Perlmutter JS, Mink JW. Dysfunction of dopaminergic pathways in dystonia. Adv Neurol 2004;94:163–70.

    PubMed  Google Scholar 

  85. Garver DL, et al. Dystonic reactions following neuroleptics: time course and proposed mechanisms. Psychopharmacologia 1976;47(2):199–201.

    PubMed  CAS  Google Scholar 

  86. Kolbe H, et al. Neuroleptic-induced acute dystonic reactions may be due to enhanced dopamine release on to supersensitive postsynaptic receptors. Neurology 1981;31(4):434–9.

    PubMed  CAS  Google Scholar 

  87. Perlmutter JS, et al. MPTP induces dystonia and parkinsonism. Clues to the pathophysiology of dystonia. Neurology 1997;49:1432–38.

    PubMed  CAS  Google Scholar 

  88. Tabbal SD, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced acute transient dystonia in monkeys associated with low striatal dopamine. Neuroscience 2006;141(3):1281–7.

    PubMed  CAS  Google Scholar 

  89. Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 1993;3(6):950–7.

    PubMed  CAS  Google Scholar 

  90. Perlmutter JS, et al. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J Neurosci 1997;17(2):843–50.

    PubMed  CAS  Google Scholar 

  91. Asanuma K, et al. Decreased striatal D2 receptor binding in non-manifesting carriers of the DYT1 dystonia mutation. Neurology 2005;64(2):347–9.

    PubMed  CAS  Google Scholar 

  92. Naumann M, et al. Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study using [123I] epidepride and [123I] beta-CIT. Mov Disord 1998;13(2):319–23.

    PubMed  CAS  Google Scholar 

  93. Breakefield XO, et al. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008;9(3):222–34.

    PubMed  CAS  Google Scholar 

  94. Kishore A, et al. Striatal D2 receptors in symptomatic and asymptomatic carriers of doparesponsive dystonia measured with [11C]-raclopride and positron-emission tomography. Neurology 1998;50(4):1028–32.

    PubMed  CAS  Google Scholar 

  95. Kunig G, et al. D2 receptor binding in dopa-responsive dystonia. Ann Neurol 1998;44(5):758–62.

    PubMed  CAS  Google Scholar 

  96. Rinne JO, et al. Striatal dopaminergic system in doparesponsive dystonia: a multi-tracer PET study shows increased D2 receptors. J Neural Transm 2004;111(1):59–67.

    PubMed  CAS  Google Scholar 

  97. Bucher SF, et al. Pallidal lesions. Structural and functional magnetic resonance imaging. Arch Neurol 1996;53(7):682–6.

    PubMed  CAS  Google Scholar 

  98. Munro-Davies LE, et al. Lateral pallidotomy exacerbates akinesia in the Parkinsonian patient. J Clin Neurosci 1999;6(6):474–6.

    PubMed  CAS  Google Scholar 

  99. Zhang J, et al. Lesions in monkey globus pallidus externus exacerbate parkinsonian symptoms. Exp Neurol 2006;199:446–453.

    PubMed  Google Scholar 

  100. Vitek JL, et al. GPi pallidotomy for dystonia: clinical outcome and neuronal activity. Adv Neurol 1998;78:211–219.

    PubMed  CAS  Google Scholar 

  101. Lozano AM, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord 1997;12:865–870.

    PubMed  CAS  Google Scholar 

  102. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281–5.

    PubMed  CAS  Google Scholar 

  103. Starr PA, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 2005;93(6):3165–76.

    PubMed  Google Scholar 

  104. Starr PA, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 2004;17(1):E4.

    PubMed  Google Scholar 

  105. Suarez JI, et al. Pallidotomy for hemiballismus: efficacy and characteristics of neuronal activity. Ann Neurol 1997;42(5):807–11.

    PubMed  CAS  Google Scholar 

  106. Vitek J, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 1999;46(1):22–35.

    PubMed  CAS  Google Scholar 

  107. Levy R, et al. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 2001;86(1):249–60.

    PubMed  CAS  Google Scholar 

  108. Merello M, et al. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord 1999;14(1):45–9.

    PubMed  CAS  Google Scholar 

  109. Hutchison WD, et al. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 2003;53(4):480–8.

    PubMed  Google Scholar 

  110. Steigerwald F, et al. Effect of propofol anesthesia on pallidal neuronal discharges in generalized dystonia. Neurosci Lett 2005;386(3):156–9.

    PubMed  CAS  Google Scholar 

  111. Tang JK, et al. Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson’s disease. J Neurophysiol 2007;98(2):720–9.

    PubMed  Google Scholar 

  112. Lenz FA, et al. Pallidal activity during dystonia: somatosensory reorganisation and changes with severity. J Neurol Neurosurg Psychiatry 1998;65(5):767–70.

    PubMed  CAS  Google Scholar 

  113. Sanghera MK, et al. Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery 2003;52(6):1358–70; discussion 1370-3.

    PubMed  Google Scholar 

  114. Gernert M, Richter A, Loscher W. In vivo extracellular electrophysiology of pallidal neurons in dystonic and nondystonic hamsters. J Neurosci Res 1999;57(6):894–905.

    PubMed  CAS  Google Scholar 

  115. Merello M, et al. Neuronal globus pallidus activity in patients with generalised dystonia. Mov Disord 2004;19(5):548–54.

    PubMed  Google Scholar 

  116. Liu X, et al. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia. Exp Neurol 2006;198(1):204–13.

    PubMed  Google Scholar 

  117. Zhuang P, Li Y, Hallett M. Neuronal activity in the basal ganglia and thalamus in patients with dystonia. Clin Neurophysiol 2004;115(11):2542–57.

    PubMed  Google Scholar 

  118. Chang EF, et al. Neuronal responses to passive movement in the globus pallidus internus in primary dystonia. J Neurophysiol 2007;98(6):3696–707.

    PubMed  Google Scholar 

  119. Gernert M, et al. Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia. J Neurosci 2002;22(16):7244–53.

    PubMed  CAS  Google Scholar 

  120. Chen CC, et al. Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3–12 Hz in patients with dystonia. Exp Neurol 2006;202(2):480–6.

    PubMed  Google Scholar 

  121. Silberstein P, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003;126(Pt 12):2597–608.

    PubMed  Google Scholar 

  122. Sharott A, et al. Is the synchronization between pallidal and muscle activity in primary dystonia due to peripheral afferance or a motor drive? Brain 2008;131(Pt 2):473–84.

    PubMed  Google Scholar 

  123. Tang JK, et al. Changes in cortical and pallidal oscillatory activity during the execution of a sensory trick in patients with cervical dystonia. Exp Neurol 2007;204(2):845–8.

    PubMed  Google Scholar 

  124. Vitek JL. Surgery for dystonia. Neurosurg Clin N Am 1998;9:345–366.

    PubMed  CAS  Google Scholar 

  125. Eidelberg D. Abnormal brain networks in DYT1 dystonia. Adv Neurol 1998;78:127–33.

    PubMed  CAS  Google Scholar 

  126. Lehericy S, et al. Clinical characteristics and topography of lesions in movement disorders due to thalamic lesions. Neurology 2001;57(6):1055–66.

    PubMed  CAS  Google Scholar 

  127. Zirh TA, et al. Thalamic single neuron and electromyographic activities in patients with dystonia. Adv Neurol 1998;78:27–32.

    PubMed  CAS  Google Scholar 

  128. Galardi G, et al. Basal ganglia and thalamo-cortical hypermetabolism in patients with spasmodic torticollis. Acta Neurologica Scandia 1996;96:167–72.

    Google Scholar 

  129. Guehl D, et al. Bicuculline injections into the rostral and caudal motor thalamus of the monkey induce different types of dystonia. Eur J Neurosci 2000;12(3):1033–7.

    PubMed  CAS  Google Scholar 

  130. Macia F, et al. Neuronal activity in the monkey motor thalamus during bicuculline-induced dystonia. Eur J Neurosci 2002;15(8):1353–62.

    PubMed  CAS  Google Scholar 

  131. Lenz FA, et al. Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol 1999;82:2372–2392.

    PubMed  CAS  Google Scholar 

  132. LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord 2003;18(1):60–9.

    PubMed  Google Scholar 

  133. Grey EG. Studies on the localization of cerebellar tumors: the position of the head and suboccipital discomforts. Ann Surg 1916;63:129–139.

    PubMed  CAS  Google Scholar 

  134. Krauss JK, Seeger W, Jankovic J. Cervical dystonia associated with tumors of the posterior fossa. Mov Disord 1997;12:443–447.

    PubMed  CAS  Google Scholar 

  135. LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol 1993;120(2):302–10.

    PubMed  CAS  Google Scholar 

  136. Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord 1994;9:493–507.

    PubMed  CAS  Google Scholar 

  137. LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res 2002;145(4):457–67.

    PubMed  Google Scholar 

  138. Beales M, et al. Quantitative autoradiography reveals selective changes in cerebellar GABA receptors of the rat mutant dystonic. J Neurosci 1990;10(6):1874–85.

    PubMed  CAS  Google Scholar 

  139. Pizoli CE, et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 2002;22(17):7825–33.

    PubMed  CAS  Google Scholar 

  140. Hoshi E, et al. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005;8(11):1491–3.

    PubMed  CAS  Google Scholar 

  141. Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? Neurology 2006;67(10):1740–1.

    PubMed  CAS  Google Scholar 

  142. Ceballos-Baumann AO, et al. Motor reorganization in acquired hemidystonia. Ann Neurol 1995;37(6):746–57.

    PubMed  CAS  Google Scholar 

  143. Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer’s cramp. Mov Disord 1998;13(3):497–508.

    PubMed  CAS  Google Scholar 

  144. Hallett M. Disorder of movement preparation in dystonia. Brain 2000;123(Pt 9):1765–1766.

    PubMed  Google Scholar 

  145. Chen R, et al. Impaired inhibition in writer’s cramp during voluntary muscle activation. Neurology 1997;49(4):1054–9.

    PubMed  CAS  Google Scholar 

  146. Gilio F, et al. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol 2000;48(1):20–6.

    PubMed  CAS  Google Scholar 

  147. Ikoma K, et al. Abnormal cortical motor excitability in dystonia. Neurology 1996;46:1371–6.

    PubMed  CAS  Google Scholar 

  148. Ridding MC, Taylor JL, Rothwell JC. The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol (London) 1995;487(2):541–8.

    CAS  Google Scholar 

  149. Curra A, et al. Transcranial magnetic stimulation techniques in clinical investigation. Neurology 2002;59(12):1851–9.

    PubMed  CAS  Google Scholar 

  150. Defazio G, Berardelli A, Hallett M. Do primary adult-onset focal dystonias share aetiological factors? Brain 2007;130(Pt 5):1183–93.

    PubMed  Google Scholar 

  151. Werhahn KJ, et al. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 1999;517(Pt 2):591–7.

    PubMed  CAS  Google Scholar 

  152. Ridding MC, et al. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 1995;59(5):493–8.

    PubMed  CAS  Google Scholar 

  153. Byl NN, et al. A primate model for studying focal dystonia and repetitive strain injury: effects on the primary somatosensory cortex. Phys Ther 1997;77(3):269–84.

    PubMed  CAS  Google Scholar 

  154. Hallett M. Is dystonia a sensory disorder? Ann Neurol 1995;38:139–40.

    PubMed  CAS  Google Scholar 

  155. Sanger TD, Merzenich MM. Computational model of the role of sensory disorganization in focal task-specific dystonia. J Neurophysiol 2000;84(5):2458–64.

    PubMed  CAS  Google Scholar 

  156. Byl NN, Merzenich MM, Jenkins WM. A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 1996;47:508–20.

    PubMed  CAS  Google Scholar 

  157. Bara-Jimenez W, et al. Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol 1998;44:828–31.

    PubMed  CAS  Google Scholar 

  158. Molloy FM, et al. Abnormalities of spatial discrimination in focal and generalized dystonia. Brain 2003;126 (Pt 10):2175–82.

    PubMed  CAS  Google Scholar 

  159. Bara-Jimenez W, et al. Sensory discrimination capabilities in patients with focal hand dystonia. Ann Neurol 2000;47(3):377–80.

    PubMed  CAS  Google Scholar 

  160. Tinazzi M, et al. Temporal discrimination of somesthetic stimuli is impaired in dystonic patients. Neuroreport 1999;10:1547–50.

    PubMed  CAS  Google Scholar 

  161. Sanger T, Tarsy D, Pascual-Leone A. Abnormalities of spatial and temporal sensory discrimination in writer’s cramp. Mov Disord 2001;16:94–9.

    PubMed  CAS  Google Scholar 

  162. Butterworth S, et al. Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 2003;18(6):673–82.

    PubMed  Google Scholar 

  163. Murase N, et al. Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 2000;123(Pt 9):1813–29.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bajwa, J.A., Johnson, M.D., Vitek, J.L. (2009). Pathophysiology of Dystonia. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_107

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics