Skip to main content

Chemotherapeutic Agents

  • Chapter
  • 1911 Accesses

Abstract

Cytotoxic agents still have to be considered as the back-bone of treatment for many patients, especially those who are not considered highly hormone-sensitive. The following overview addresses drugs that are registered and currently most frequently used in breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine MN et al (1998) Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 16(8):2651–8

    CAS  PubMed  Google Scholar 

  2. French Adjuvant Study Group (2001) Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French Adjuvant Study Group 05 Randomized Trial. J Clin Oncol. 19:602–11

    Google Scholar 

  3. Poole CJ et al (2006) Epirubicin and cyclophosphamide, methotrexate, and fluorouracil as adjuvant therapy for early breast cancer. N Engl J Med. 355(18):1851–62

    Article  CAS  PubMed  Google Scholar 

  4. Meta Analysis of the EBCTCG (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 352(9132):930–42

    Article  Google Scholar 

  5. Fisher B et al (2004) Treatment of axillary lymph node-negative, estrogen receptor-negative breast cancer: updated findings, from national surgical adjuvant breast and bowel project clinical trials. J Natl Cancer Inst. 96(24):1823–31

    Article  PubMed  Google Scholar 

  6. Fisher B et al (1990) Two months of doxorubicin/cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol. 8:1483–96

    CAS  PubMed  Google Scholar 

  7. Marin M et al (2003) Doxorubicin in combination with fluorouracil and cyclophosphamide (i.v. FAC regime, day 1,21) versus methotrexate in combination with fluorouracil and cyclophosphamide (i.v. CMF regime 1,21) as adjuvant chemotherapy for operable breast cancer. A study by the GEICAM group. Ann Oncol. 14:833–42

    Article  Google Scholar 

  8. Early breast cancer trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet. 365:1687–717

    Article  CAS  Google Scholar 

  9. Von Hoff DD et al (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 91(5):710–7

    Google Scholar 

  10. Kesavan S et al (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med. 125:47–58

    Google Scholar 

  11. Perez EA et al (2004) Effect of doxorubicin plus cyclophosphamide on left ventricular ejection fraction in patients with breast cancer in the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J Clin Oncol. 22:3700–4

    Article  CAS  PubMed  Google Scholar 

  12. Fumoleau P et al (2003) Long-term benefit/risk ratio of epirubicin (EPI)-based adjuvant chemotherapy (CT) in operable breast cancer (BC) patients (pts): 7-year analysis in 3577 pts of French Adjuvant Study Group (FASG) trials. Proc Am Soc Clin Oncol. 22:23

    Google Scholar 

  13. Smith RE et al (2003) Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol. 21:1195–204

    Article  CAS  PubMed  Google Scholar 

  14. Diamandidou E et al (1996) Treatment-related leukemia in breast cancer patients treated with fluorouracil-doxorubicin-cyclophosphamide combination adjuvant chemotherapy: the University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol. 14:2722–30

    CAS  PubMed  Google Scholar 

  15. Albain K et al (2001) Overall survival after cyclophosphamide, adriamycin, 5-FU, and tamoxifen (CAFT) is superior to T alone in postmenopausal, receptor(+), node(+) breast cancer: new findings from phase III Southwest Oncology Group Intergroup Trial S8814 (INT-0100). Proc Am Soc Clin Oncol. 20:94a

    Google Scholar 

  16. Praga C, Bergh J, Bliss J et al (2005) Risk of myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol. 23:4179–91

    Article  CAS  PubMed  Google Scholar 

  17. Rowinsky EK. Clinical pharmacology of taxol. J Natl Cancer Inst Monogr. 1993;(15):25–37

    PubMed  Google Scholar 

  18. Roché H et al (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol. 24(36): 5664–71

    Article  PubMed  CAS  Google Scholar 

  19. Martin M et al (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 352(22):2302–13

    Article  CAS  PubMed  Google Scholar 

  20. Henderson IC et al (2003) Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-postive primary breast cancer. J Clin Oncol. 21(6):976–83

    Article  CAS  PubMed  Google Scholar 

  21. Fachinfo für Paclitaxel, Version November 2007

    Google Scholar 

  22. Gradishar WJ et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 23(31):7794–803

    Article  CAS  PubMed  Google Scholar 

  23. Perez EA, et al Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2007;25(23):3407–14. Epub 2007 Jul 2

    Article  CAS  PubMed  Google Scholar 

  24. Thomas E, et al Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxaneresistant metastatic breast cancer. J Clin Oncol. 2007;25(23):3399–406. Epub 2007 Jul 2

    Article  CAS  PubMed  Google Scholar 

  25. Baselga J et al (2009) Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J Clin Oncol. 27(4):526–34

    Article  CAS  PubMed  Google Scholar 

  26. Finek J et al (2009) A phase II trial of oral vinorelbine and capecitabine in anthracycline-pretreated patients with metastatic breast cancer. Anticancer Res. 29(2):667–70

    CAS  PubMed  Google Scholar 

  27. Nolè F et al (2009) Phase II study of an all-oral combination of vinorelbine with capecitabine in patients with metastatic breast cancer. Cancer Chemother Pharmacol. 64(4):673–80

    Article  PubMed  CAS  Google Scholar 

  28. Bartsch R et al (2007) Capecitabine and trastuzumab in heavily pretreated metastatic breast cancer. J Clin Oncol. 25(25):3853–8

    Article  CAS  PubMed  Google Scholar 

  29. Chen L et al (2002) Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Pharmaceut Des. 8:1405–16

    Article  CAS  Google Scholar 

  30. Schwartz PS et al (2003) Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy. Cancer Gene Ther. 10:571–82

    Article  CAS  PubMed  Google Scholar 

  31. Brock N (1989) Oxazaphosphorine cytostatics: Past-Present-Future, Seventh Cain Memorial Award Lecture 1. Cancer Res. 49:1–7

    CAS  PubMed  Google Scholar 

  32. Bonadonna G et al (1995) Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N Engl J Med. 332(14):901–6

    Article  CAS  PubMed  Google Scholar 

  33. Piccart MJ (2001) Phase III trial comparing two dose levels of epirubicin combined with cyclophosphamide with cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer. J Clin Oncol. 19(12):3103–10

    CAS  PubMed  Google Scholar 

  34. Cheson BD et al (2009) Bendamustine: rebirth of an old drug. J Clin Oncol. 27(9):1492–501

    Article  CAS  PubMed  Google Scholar 

  35. Pirvulescu C et al (2008) Bendamustin in metastatic breast cancer: an old drug in new design. Breast Care. 3:333–9

    Google Scholar 

  36. Jamitzky T (1996) Third-line chemotherapy with bendamustin for metastatic breast cancer. A prospective pilot study. 7th EORTC Breast Cancer Working Conference. Eur J cancer. 32A(Suppl 2):47

    Article  Google Scholar 

  37. von Minckwitz G et al (2005) Bendamustine prolongs progression-free survival in metastatic breast cancer (MBC): a phase III prospective, randomized, multicenter trial of bendamustine hydrochloride, methotrexate and 5-fluorouracil (BMF) versus cyclophosphamide, methotrexate and 5-fluorouracil (CMF) as first-line treatment of MBC. Anticancer Drugs. 16(8):871–7

    Article  Google Scholar 

  38. Reichmann U et al (2007) Salvage chemotherapy for metastatic breast cancer: results of a phase II study with bendamustine. Ann Oncol. 18:1981–4

    Article  CAS  PubMed  Google Scholar 

  39. O’Shaughnessy J et al (2002) Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol. 20(12):2812–23

    Article  PubMed  CAS  Google Scholar 

  40. Wadler S, Benson AB 3rd, Engelking C et al (1998) Recommended guidelines for the treatment of chemotherapy-induced diarrhea. J Clin Oncol. 16:3169

    CAS  PubMed  Google Scholar 

  41. Bauer P, Köhne K (1994) Evaluation of experiments with adaptive interim analyses. Biometrics. 50:1029–41

    Article  CAS  PubMed  Google Scholar 

  42. Albain KS et al (2008) Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol. 26(24):3950–7

    Article  PubMed  Google Scholar 

  43. Gudena V et al (2008) Gemcitabine and taxanes in metastatic breast cancer: a systematic review. Ther Clin Risk Manag. 4(6):1157–64

    CAS  PubMed  Google Scholar 

  44. O’Shaughnessy J, Miles D, Vukelja S et al (2002) Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol. 20:2812–23

    Article  PubMed  CAS  Google Scholar 

  45. Beslija S, Obralic N, Basic H, et al Randomized trial of sequence vs combination of capecitabine (X) and docetaxel (T): XT vs T followed by X after progression as first-line therapy for patients (pts) with metastatic breast cancer (MBC). J Clin Oncol (Meeting Abstract). 2006;24:571

    Google Scholar 

  46. Martin M, Ruiz A, Munoz M et al (2007) Gemcitabine plus vinorelbine versus vinorelbine monotherapy in patients with metastatic breast cancer previously treated with anthracyclines and taxanes: final results of the phase III Spanish Breast Cancer Research Group (GEICAM) trial. Lancet Oncol. 8:219–25

    Article  CAS  PubMed  Google Scholar 

  47. Chan S, et al Phase III study of gemcitabine plus docetaxel compared with capecitabine plus docetaxel for anthracycline-pretreated patients with metastatic breast cancer. J Clin Oncol. 2009;27(11):1753–60. Epub 2009 Mar 9

    Article  CAS  PubMed  Google Scholar 

  48. Perez EA et al (2004) Carboplatin in combination therapy for metastatic breast cancer. Oncologist. 9:518–27

    Article  CAS  PubMed  Google Scholar 

  49. Perez EA et al (2000) A phase II study of paclitaxel plus carboplatin as first-line chemotherapy for women with metastatic breast carcinoma. Cancer. 88:124–31

    Article  CAS  PubMed  Google Scholar 

  50. Loesch D et al (2002) Phase II multicenter trial of a weekly paclitaxel and carboplatin regimen in patients with advanced breast cancer. J Clin Oncol. 20:3857–64

    Article  CAS  PubMed  Google Scholar 

  51. Sirohi B. Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol. 2008;19(11):1847–52. Epub 2008 Jun 20

    Article  CAS  PubMed  Google Scholar 

  52. Abella JV (2009) Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab. 296:E973–84

    Article  CAS  PubMed  Google Scholar 

  53. Clifford AH (2007) (2007) Trastuzumab — mechanism of action and use in clinical practice. N Engl J Med. 357: 39–51

    Article  Google Scholar 

  54. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 353:1673–84

    Article  CAS  PubMed  Google Scholar 

  55. Piccart-Gebhart MJ et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 353:1659–72

    Article  CAS  PubMed  Google Scholar 

  56. Slamon D et al (2005) Phase III randomized trial comparing doxorubicin and cyclophosphamide, followed by docetaxel (AC-T) with doxorubicin and cyclophosphamide, followed by docetaxel and trastuzumab (AC TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2-positive early breast cancer patients: BCIRG 006 study. Breast Cancer Res Treat. 94(Suppl 1):S5

    Google Scholar 

  57. Joensuu H et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 354:809–20

    Article  CAS  PubMed  Google Scholar 

  58. Baselga J et al (2006) Adjuvant trastuzumab: a milestone in the treatment of HER2-positive early breast cancer. Oncologist. 11(Suppl 1):4–12

    Article  CAS  PubMed  Google Scholar 

  59. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 355:2733–43

    Article  CAS  PubMed  Google Scholar 

  60. Dhillon S, et al Lapatinib. Drugs. 2007;67:2101–8; discussion 2109-10

    Article  CAS  Google Scholar 

  61. Mukherjee A, Dhadda AS, Shehata M et al (2007) Lapatinib: a tyrosine kinase inhibitor with a clinical role in breast cancer. Expert Opin Pharmacother. 8:2189–204

    Article  CAS  PubMed  Google Scholar 

  62. Montemurro F, Valabrega G, Aglietta M (2007) Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther. 7:257–68

    Article  CAS  PubMed  Google Scholar 

  63. Burris HA, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 23:5305–13

    Article  CAS  PubMed  Google Scholar 

  64. Perez EA, Byrne JA, Hammond IW et al (2006) Results of an analysis of cardiac function in 2, 812 patients treated with lapatinib. J Clin Oncol. 24:S18

    Article  Google Scholar 

  65. Adams CW et al (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother. 55(6):717–27

    Article  CAS  PubMed  Google Scholar 

  66. Attard G, et al A phase Ib study of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in patients with advanced solid tumours. Br J Cancer. 2007;97: 1338–43

    Article  CAS  PubMed  Google Scholar 

  67. Presta LG, Chen H, O’Connor SJ et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57:4593–9

    CAS  PubMed  Google Scholar 

  68. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2:727–39

    Article  CAS  PubMed  Google Scholar 

  69. Jain RK (2001) Normalizing tumor vasculature with antiangiogenic therapy: a new paradigm for combination therapy. Nat Med. 7:987–9

    Article  CAS  PubMed  Google Scholar 

  70. Cobleigh MA, Langmuir VK, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol. 30: 117–24

    Article  CAS  PubMed  Google Scholar 

  71. Adnane L, Trail PA, Taylor I et al (2005) Sorafenib (BAY 43-9006, Nexavar®, a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGER in tumor vasculature. Methods Enzymol. 407:597–612

    Google Scholar 

  72. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109. PMID: 15466206

    Article  CAS  PubMed  Google Scholar 

  73. Thompson N, Lyons J (2005) Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol. 5(4):350–6. Review. PMID: 15955734

    Article  CAS  PubMed  Google Scholar 

  74. Caraglia M, Tassone P, Marra M, Budillon A, Venuta S, Tagliaferri P. Targeting Raf-kinase: molecular rationales and translational issues. Ann Oncol. 2006;17(Suppl 7): vii 124–7. PMID: 16760274

    Google Scholar 

  75. Carter CA, Chen C, Brink C, Vincent P, Maxuitenko YY, Gilbert KS, Waud WR, Zhang X. Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol. 2007 Feb;59(2): 183–95. Epub 2006 May 25

    Article  CAS  PubMed  Google Scholar 

  76. Lee D, Heymach JV. Emerging antiangiogenic agents in lung cancer. Clin Lung Cancer. 2006;7(5):304–8. Review

    Article  CAS  PubMed  Google Scholar 

  77. Kumar A, Wakelee H. Second-and third-line treatments in non-small cell lung cancer. Curr Treat Options Oncol. 2006;7(1):37–49. Review. PMID: 16343367

    Article  PubMed  Google Scholar 

  78. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol. 2005;23(14):3243–56. Review. PMID: 15886312

    Article  CAS  PubMed  Google Scholar 

  79. Wilhelm S, Chien DS (2002) BAY 43-9006: preclinical data. Curr Pharm Des. 8(25):2255–7. Review. PMID: 12369853

    Article  CAS  PubMed  Google Scholar 

  80. Burstein HJ et al (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26(11):1810–6

    Article  CAS  PubMed  Google Scholar 

  81. Huang S, Houghton PJ (2002) Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs. 3:295–304

    CAS  PubMed  Google Scholar 

  82. Lane H, Tanka C, Kovaril T et al (2003) Preclinical and clinical pharmacokinetic/pharmacodynamic modeling to help to define an optimal biological dose for the oral mTOR inhibitor, RAD 001, in oncology. Proc Am Soc Clin Oncol. 22:237

    Google Scholar 

  83. Francesc V, Chambard JC, Pouyssegur J (1999) p70s6 Kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem. 274:26776–82

    Article  Google Scholar 

  84. Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth. Nat Med 8:128–35

    Article  CAS  PubMed  Google Scholar 

  85. Lane H et al (2003) Preclinical and clinical pharmacokinetic/pharmacodynamic modeling to help to define an optimal biological dose for the oral mTOR inhibitor, RAD 001, in oncology. Proc Am Soc Clin Oncol. 22:237

    Google Scholar 

  86. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med. 339(22):1609–18

    Article  CAS  PubMed  Google Scholar 

  87. Desta Z et al (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 310(3):1062–75

    Article  CAS  PubMed  Google Scholar 

  88. Valachis A, Mauri D, Polyzos NP, Mavroudis D, Georgoulias V. Casazza G Fulvestrant in the treatment of advanced breast cancer: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Oncol Hematol. 2009 Apr 13

    Google Scholar 

  89. McKeage K et al (2004) Fulvestrant: a review of its use in hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Drugs. 64(6):633–48

    Article  CAS  PubMed  Google Scholar 

  90. Jones SE et al (2005) Effectiveness and tolerability of fulvestrant in postmenopausal women with hormone receptor-positive breast cancer. Clin Breast Cancer. 6(Suppl 1):S9–14

    Article  Google Scholar 

  91. Engel JB et al (2007) Drug insight: clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nat Clin Pract Endocrinol Metab. 3(2):157–67

    Article  CAS  PubMed  Google Scholar 

  92. Russell RG, Rogers MJ (2005) Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999;25:97–106, Clezardin P. Anti-tumour activity of zoledronic acid. Cancer Treat Rev. 31(Suppl 3):1–8

    Google Scholar 

  93. Lipton A (2008) Emerging role of bisphosphonates in the clinic —antitumor activity and prevention of metastasis to bone. Cancer Treat Rev. 34:S25–30

    Article  CAS  Google Scholar 

  94. Woo SB, Hellstein JW, Kalmar JR (2006) Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med. 144(10):753–61. Review

    CAS  PubMed  Google Scholar 

  95. Sawatari Y, Marx RE. Bisphosphonates and bisphosphonate-induced osteonecrosis. Oral Maxillofac Surg Clin North Ann. 2007;19(4):487–98, v–vi

    Article  Google Scholar 

  96. Felsenberg D, Hoffmeister B, Amling M, Mundlos S, Seibel MJ, Fratzl P (2006) Onkologie: Kiefernekrosen nach hoch dosierter Bisphosphonattherapie. Deutsches Ärzteblatt. 103(46):3078–81

    Google Scholar 

  97. Sambrook P, Olver I, Goss A (2006) Bisphosphonates and osteonecrosis of the jaw. Aust Fam Physician. 35(10): 801–3

    PubMed  Google Scholar 

  98. Mavrokokki T, Cheng A, Stein B, Goss A (2007) Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg. 65(3):415–23

    Article  PubMed  Google Scholar 

  99. Fizazi K et al (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 27(10):1564–71

    Article  CAS  PubMed  Google Scholar 

  100. Ellis GK et al (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 26(30):4875–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linder, M., von Minckwitz, G. (2010). Chemotherapeutic Agents. In: Jatoi, I., Kaufmann, M. (eds) Management of Breast Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69743-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69743-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69742-8

  • Online ISBN: 978-3-540-69743-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics