Skip to main content

Finding Invariants of Group Actions on Function Spaces, a General Methodology from Non-Abelian Harmonic Analysis

  • Chapter
  • 1894 Accesses

Summary

In this paper, we describe a general method using the abstract non-Abelian Fourier transform to construct “rich” invariants of group actions on functional spaces.

In fact, this method is inspired of a classical method from image analysis: the method of Fourier descriptors, for discrimination among “contours” of objects. This is the case of the Abelian circle group, but the method can be extended to general non-Abelian cases.

Here, we improve on some of our previous developments on this subject, in particular in the case of compact groups and motion groups. The last point (motion groups) is in the perspective of invariant image analysis. But our method can be applied to many practical problems of discrimination, or detection, or recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Abraham R, Robbin J (1967) Transversal Mappings and Flows. W.A. Benjamin Inc.

    Google Scholar 

  2. . Barut AO, Raczka R (1986) Theory of Group representations and applications, second edition. World Scientific.

    Google Scholar 

  3. . Boser BE, Guyon IM, Vapnik V (1992) A Training Algorithm for Optimal Margin classifiers. In: proc. Fifth Ann. Workshop Computational Learning theory, 144–152. ACM Press.

    Google Scholar 

  4. Chen S (1985) A new vision system and the Fourier Descriptors Method by Group Representations. IEEE CDC conference, 1985, Las Vegas, USA.

    Google Scholar 

  5. Chu H (1966) Compactification and duality of topological groups. Trans. American Math. Society, 123:310–324.

    Article  MATH  Google Scholar 

  6. Dixmier J (1969) Les C∗-algèbres et leurs repréentations. Gauthier-Villars, Paris.

    Google Scholar 

  7. . Fonga H (1992) Analyse harmonique sur les groupes et reconnaissance de formes. PHD Thesis, université de Grenoble.

    Google Scholar 

  8. . Fukunaga K (1990) Introduction to statistical Pattern Recognition, second ed. Academic Press.

    Google Scholar 

  9. Gauthier JP, Bornard G, Zilbermann M (1991) Harmonic analysis on motion groups and their homogeneous spaces. IEEE Trans on Systems, Man and Cyb., 21.

    Google Scholar 

  10. . Ghorbel F (1994) A complete invariant description for grey level images by the harmonic analysis approach. Pattern Recognition Letters, 15.

    Google Scholar 

  11. Gourd F (1990) Quelques Méthodes d’Analyse Harmonique en Théorie de la Détection et de la Reconnaissance de Formes. PHD thesis, Université de Grenoble.

    Google Scholar 

  12. . Gourd F, Gauthier JP, Younes H (1989) Une méthode d’invariants de l’analyse harmonique en reconnaissance de formes, Traitement du Signal, 6(3).

    Google Scholar 

  13. Hewitt E, Ross KA (1963) Abstract Harmonic analysis. Springer Verlag, Berlin.

    MATH  Google Scholar 

  14. . Heyer H (1970) Dualität über LokalKompakter Gruppen. Springer Verlag.

    Google Scholar 

  15. Joyal A, Street R (1991) An Introduction to Tannaka Duality and Quantum Groups. Lecture notes in maths 1488, Springer, pp. 411–492.

    MathSciNet  Google Scholar 

  16. Kyatkin AB, Chirikjan GS (1999) Pattern matching as a correlation on the discrete Motion Group. Computer Vision and Image Understanding, 74(1) 22–35.

    Article  Google Scholar 

  17. Persoon, King Sun Fu (1977) Shape discrimination using Fourier descriptors. IEEE systems man and cybernetics, SMC 7(3). 186 Jean-Paul Gauthier et al.

    MathSciNet  Google Scholar 

  18. . Smach F, Lemaˆıtre C, Gauthier JP, Miteran J (2006) Generalized Fourier Descriptors with Applications to object recognition in SVM Context. Submitted.

    Google Scholar 

  19. Tatsuuma N (1967) A duality Theorem for locally compact groups. J. Math. Kyoto Univ 6:187–293.

    MathSciNet  Google Scholar 

  20. Turski J (2004) Geometric Fourier Analysis of the conformal camera for active vision. SIAM review, 46(1).

    Google Scholar 

  21. . Vapnik VN (1998) The statistical Learning Theory. Springer.

    Google Scholar 

  22. Vilenkin N (1969) Fonctions spéciales et théorie de la représentation des groupes. Dunod, Paris.

    MATH  Google Scholar 

  23. . Warner G (1972) Harmonic Analysis on semi-simple Lie Groups. Springer Verlag.

    Google Scholar 

  24. Weil A (1965) L’intégration dans les groupes topologiques et ses applications. Hermann, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gauthier, JP., Smach, F., Lemaître, C., Miteran, J. (2008). Finding Invariants of Group Actions on Function Spaces, a General Methodology from Non-Abelian Harmonic Analysis. In: Sarychev, A., Shiryaev, A., Guerra, M., Grossinho, M.d.R. (eds) Mathematical Control Theory and Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69532-5_10

Download citation

Publish with us

Policies and ethics