Skip to main content

The Rapid Retreat of Jakobshavns Isbræ, West Greenland: Field Observations of 2005 and Structural Analysis of its Evolution

  • Chapter
Progress in Geomathematics
  • 1050 Accesses

Abstract

Jakobshavns Isbræ in West Greenland (terminus at ≈69° 10′N/50deg;,W), a major outlet glacier of the Greenland Ice Sheet and a continuously fast-moving ice stream, has long been the fastest moving and one of the most productive glaciers on Earth. It had been moving continuously at speeds of over 20m/day with a stable front position throughout most of the latter half of the 20th century, except for relatively small seasonal changes. In 2002 the ice stream apparently suddenly entered a phase of rapid retreat. The ice front started to break up, the floating tongue disintegrated, and the production of icebergs increased.

In July 2005, we conducted an extensive aerial survey of Jakobshavns Isbræ to measure and document the present state of retreat compared to our previous field observations since 1996. We use an approach that combines structural analysis of deformation features with continuum mechanics to assess the kinematics and dynamics of glaciers, based on aerial imagery, satellite data and GPS measurements. Results from interpretation of ERS-SAR and ASTER data from 1995 to 2005 in combination with aerial imagery from 1996 to 2005 shed light on the question of changes versus stability and their causes in the Jakobshavns Isbræ dynamical system. The recently observed retreat of Jakobshavns Isbræ is attributed to climatic warming, rather than to an inherent change in the glaciodynamic system. Close to the retreating front, deformation structures are characteristic of extension and disintegration. Deformation provinces that do not border the retreating front have had the same deformation characteristics throughout the past decade (1996–2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalati W, Manizade S, Golder J, Thomas RH, Krabill W, Csatho B (2003) Recent increase in flow rates of the Jakobshavn Isbræ , Greenland. Eos Trans Am Geophys Union 84 (46 Suppl.), F370.

    Google Scholar 

  • Alley RB, Whillans IM (1991) Changes in the West Antarctic ice sheet. Science, 254, 950–963

    Article  Google Scholar 

  • Bennike O, Mikkelsen N, Klinge Pedersen H, Weidick A (eds) (2004) Ilulissat Icefjord. Geological Survey of Denmark and Greenland (GEUS), Copenhagen, p 116

    Google Scholar 

  • Clarke GKC (1987) Fast glacier flow: ice streams, surging, and tidewater glaciers. J Geophys Res 92 (B9): 8835–8841

    Article  Google Scholar 

  • Echelmeyer K, Clarke TS, Harrison WD (1991) Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. J Glaciol 37 (127): 368–382

    Google Scholar 

  • Echelmeyer K, Harrison WD (1990) Jakobshavns Isbræ , West Greenland: seasonal variations in velocity – or lack thereof. J Glaciol 36: 82–88

    Google Scholar 

  • Herzfeld UC (1998) The 1993–1995 surge of Bering Glacier (Alaska) – a photographic documentation of crevasse patterns and environmental changes. Trierer Geograph Studien 17: 211 p, Geograph Gesellschaft Trier and Fachbereich VI – Geographie/Geowissenschaften, Universität Trier, Trier, p 211

    Google Scholar 

  • Herzfeld UC, Mayer H (1997) Surge of Bering Glacier and Bagley Ice Field, Alaska: an update to August 1995 and an interpretation of brittle-deformation patterns. J Glaciol 43 (145):427–434

    Google Scholar 

  • Herzfeld UC, Mayer H (2003) Seasonal comparison of ice-surface structures in the ablation area of Jakobshavn Isbræ drainage system, West Greenland. Ann Glaciol 37: 199–206

    Article  Google Scholar 

  • Herzfeld UC, Mayer H, Feller W, Mimler M (1999) Glacier roughness surveys of Jakobshavns Isbrae Drainage Basin, West Greenland, and morphological characterization. Zeitschrift für Gletscherkunde und Glazialgeologie 35 (2): 117–146

    Google Scholar 

  • Herzfeld UC, Mayer H, Feller W, Mimler M (2000a) Geostatistical analysis of glacier-roughness data. Ann Glaciol 30: 235–242

    Article  Google Scholar 

  • Herzfeld UC, Stauber M, Stahl N (2000b) Geostatistical characterization of ice surfaces from ERS-1} and ERS-2 SAR data, Jakobshavn Isbræ , Greenland. Ann Glaciol 30: 224–234

    Article  Google Scholar 

  • Herzfeld UC, Clarke GKC, Mayer H, Greve R (2004) Derivation of deformation characteristics in fast-moving glaciers. Comput Geosci 30: 291–302

    Article  Google Scholar 

  • Herzfeld UC, Box JE, Steffen K, Mayer H, Caine N, Losleben MV (2006) A case study on the influence of snow and ice surface roughness on melt energy. Zeitschrift Gletscherkunde Glazialgeol 39 (2003/2004, printed 2006): 1–42

    Google Scholar 

  • Hollin J T (1962) On the glacial history of Antarctica. J Glaciol 4 (32): 173–195

    Google Scholar 

  • Hughes T J (1973) Is the West Antarctic Ice Sheet disintegrating? J Geophys Res 78: 7884–7910

    Article  Google Scholar 

  • Huybrechts P (1993) Glaciological modelling of the late cenozoic East Antarctic ice sheet: stability or dynamism?, Gegrafiska Annaler 75 A: 221–238

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432 (7017): 608–609

    Article  Google Scholar 

  • Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (1999) Rapid thinning of parts of the southern Greenland ice sheet. Science 283: 1522–1524

    Article  Google Scholar 

  • Luckman A, Murray T (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland. Geophys Res Lett 32, L08501, doi:10.1029/2005GL022519

    Article  Google Scholar 

  • Mayer H, Herzfeld UC (2000) Structural glaciology of the fast-moving Jakobshavn Isbræ , Greenland}, compared to the surging Bering Glacier, Alaska, U.S.A. Annals Glaciol30: 243–249

    Article  Google Scholar 

  • Mayer H, Herzfeld UC (2001) A structural segmentation, kinematic analysis and dynamic interpretation of Jakobshavns Isbræ , West Greenland. Zeitschrift für Gletscherkunde und Glazialgeologie 37(2)(2001, printed 2002): 107–123

    Google Scholar 

  • Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271: 321–325

    Article  Google Scholar 

  • Muszynski I, Birchfield GE (1987) A coupled marine ice stream – ice shelf model. J Glaciol 33:3–15

    Google Scholar 

  • Pelto MS, Hughes TJ, Brecher HH (1989) Equilibrium state of Jakobshavns Isbræ, West Greenland. Ann Glaciol 12: 127–131

    Google Scholar 

  • Podlech S, Weidick A (2004) A catastrophic break-up of the front of Jakobshavn Isbræ , West Greenland, 2002/03. J Glaciol 50 (168): 153–154

    Article  Google Scholar 

  • Schubert G, Yuen DA (1982) Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet. Nature 292: 127–130

    Article  Google Scholar 

  • Steffen K, Box JE (2001) Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999. J Geophys Res 106 (D24): 33951–33964

    Article  Google Scholar 

  • Thomas RH (1977) Calving bay dynamics and ice sheet retreat up the St. Lawrence valley system. Geogr Phys Quat 31: 167–177

    Google Scholar 

  • Thomas RH, Bentley CR (1978) A model for Holocene retreat fo the West Antarctic ice sheet. Quat Res 10:150–170

    Article  Google Scholar 

  • Thomas RH, Abdalati W, Frederick E, Krabill WB, Manizade S, Steffen K (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ , Greenland. J Glaciol 49 (165): 231–239

    Article  Google Scholar 

  • Vandrekort Nordgrønland, Ilulissat, Scale 1:100000, contour interval 25 m, 1995/96, Compukort, Denmark

    Google Scholar 

  • van der Veen CJ (1985) Response of a marine ice sheet to changes at the grounding line. Quat Res 24: 257–267

    Article  Google Scholar 

  • Vaughan DG (1993) Implications of break-up of Wordie Ice Shelf, Antarctica for sea level. Antarctic Sci 5 (4): 403–408

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297 (5579): 218–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayer, H., Herzfeld, U.C. (2008). The Rapid Retreat of Jakobshavns Isbræ, West Greenland: Field Observations of 2005 and Structural Analysis of its Evolution. In: Bonham-Carter, G., Cheng, Q. (eds) Progress in Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69496-0_7

Download citation

Publish with us

Policies and ethics