Skip to main content

Recovering the Long-Range Links in Augmented Graphs

  • Conference paper
Book cover Structural Information and Communication Complexity (SIROCCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5058))

Abstract

The augmented graph model, as introduced by Kleinberg (STOC 2000), is an appealing model for analyzing navigability in social networks. Informally, this model is defined by a pair (H,ϕ), where H is a graph in which inter-node distances are supposed to be easy to compute or at least easy to estimate. This graph is ”augmented” by links, called long-range links, which are selected according to the probability distribution ϕ. The augmented graph model enables the analysis of greedy routing in augmented graphs G ∈ (H,ϕ). In greedy routing, each intermediate node handling a message for a target t selects among all its neighbors in G the one that is the closest to t in H and forwards the message to it.

This paper addresses the problem of checking whether a given graph G is an augmented graph. It answers part of the questions raised by Kleinberg in his Problem 9 (Int. Congress of Math. 2006). More precisely, given G ∈ (H,ϕ), we aim at extracting the base graph H and the long-range links R out of G. We prove that if H has high clustering coefficient and H has bounded doubling dimension, then a simple local maximum likelihood algorithm enables to partition the edges of G into two sets H′ and R′ such that E(H) ⊆ H′ and the edges in H′ ∖ E(H) are of small stretch, i.e., the map H is not perturbed too greatly by undetected long-range links remaining in H′. The perturbation is actually so small that we can prove that the expected performances of greedy routing in G using the distances in H′ are close to the expected performances of greedy routing using the distances in H. Although this latter result may appear intuitively straightforward, since H′ ⊇ E(H), it is not, as we also show that routing with a map more precise than H may actually damage greedy routing significantly. Finally, we show that in absence of a hypothesis regarding the high clustering coefficient, any local maximum likelihood algorithm extracting the long-range links can miss the detection of at least Ω(n 5ε/logn) long-range links of stretch at least Ω(n 1/5 − ε) for any 0 < ε< 1/5, and thus the map H cannot be recovered with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Gavoille, C.: Object location using path separators. In: 25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 188–197 (2006)

    Google Scholar 

  2. Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + ε) locality aware networks for DHTs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2004)

    Google Scholar 

  3. Andersen, R., Chung, F., Lu, L.: Modeling the small-world phenomenon with local network flow. Internet Mathematics 2(3), 359–385 (2006)

    MathSciNet  Google Scholar 

  4. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of Traceroute sampling, or: power-law degree distributions in regular graphs. In: 37th ACM Symposium on Theory of Computing (STOC) (2005)

    Google Scholar 

  5. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems. In: 21st ACM Symp. on Principles of Distributed Computing (PODC), pp. 223–232 (2002)

    Google Scholar 

  6. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient routing in networks with long-range contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 270–284. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. Lect. Notes Phys. 650, 89–104 (2004)

    MathSciNet  Google Scholar 

  9. Dodds, P., Muhamad, R., Watts, D.: An experimental study of search in global social networks. Science 301(5634), 827–829 (2003)

    Article  Google Scholar 

  10. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emergence. In: 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 225–232 (2006)

    Google Scholar 

  12. Flammini, M., Moscardelli, L., Navarra, A., Perennes, S.: Asymptotically optimal solutions for small world graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 414–428. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal augmentation schemes for network navigability: overcoming the \(\sqrt{n}\)-barrier. In: 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2007)

    Google Scholar 

  15. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 169–178 (2004)

    Google Scholar 

  16. Fraigniaud, P., Lebhar, E., Lotker, Z.: A doubling dimension threshold Θ(loglogn) for augmented graph navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Gupta, A., Krauthgamer, R., Lee, J.: Bounded geometries, fractals, and low- distortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (2003)

    Google Scholar 

  18. Heinonen, J.: Lectures on analysis on metric spaces. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  19. Har-Peled, S., Mendel, M.: Fast Construction of Nets in Low Dimensional Metrics, and Their Applications. SICOMP 35(5), 1148–1184 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Iamnitchi, A., Ripeanu, M., Foster, I.: Small-world file-sharing communities. In: 23rd Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 952–963 (2004)

    Google Scholar 

  21. Karger, D., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: 34th ACM Symp. on the Theory of Computing (STOC), pp. 63–66 (2002)

    Google Scholar 

  22. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, ch. 7. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  23. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: 32nd ACM Symp. on Theory of Computing (STOC), pp. 163–170 (2000)

    Google Scholar 

  24. Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. Advances in Neural Information Processing Systems (NIPS) 14 (2001)

    Google Scholar 

  25. Kleinberg, J.: Complex networks and decentralized search algorithm. In: Nevanlinna prize presentation at the International Congress of Mathematicians (ICM), Madrid (2006)

    Google Scholar 

  26. Krioukov, D., Fall, K., Yang, X.: Compact routing on Internet-like graphs. In: 23rd Conference of the IEEE Communications Society (INFOCOM) (2004)

    Google Scholar 

  27. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating Low-Dimensional and Hierarchical Population Networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. In: Proc. of the Natl. Academy of Sciences of the USA, vol. 102/3, pp. 11623–11628

    Google Scholar 

  29. Lebhar, E., Schabanel, N.: Searching for Optimal paths in long-range contact networks. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 894–905. Springer, Heidelberg (2004)

    Google Scholar 

  30. Manku, G., Naor, M., Wieder, U.: Know Thy Neighbor’s Neighbor: The Power of Lookahead in Randomized P2P Networks. In: 36th ACM Symp. on Theory of Computing (STOC), pp. 54–63 (2004)

    Google Scholar 

  31. Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) Small-world Models. In: 23rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 179–188 (2004)

    Google Scholar 

  32. Martel, C., Nguyen, V.: Analyzing and characterizing small-world graphs. In: 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 311–320 (2005)

    Google Scholar 

  33. Martel, C., Nguyen, V.: Designing networks for low weight, small routing diameter and low congestion. In: 25th Conference of the IEEE Communications Society (INFOCOM) (2006)

    Google Scholar 

  34. Milgram, S.: The Small-World Problem. Psychology Today, pp. 60–67 (1967)

    Google Scholar 

  35. Newman, M.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, M., Barabasi, A., Watts, D. (eds.): The Structure and Dynamics of Complex Networks. Princeton University Press, Princeton (2006)

    Google Scholar 

  37. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  38. Slivkins, A.: Distance estimation and object location via rings of neighbors. In: 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 41–50 (2005)

    Google Scholar 

  39. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–443 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander A. Shvartsman Pascal Felber

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Lebhar, E., Lotker, Z. (2008). Recovering the Long-Range Links in Augmented Graphs. In: Shvartsman, A.A., Felber, P. (eds) Structural Information and Communication Complexity. SIROCCO 2008. Lecture Notes in Computer Science, vol 5058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69355-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69355-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69326-0

  • Online ISBN: 978-3-540-69355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics