Skip to main content

Asymmetric Cell Division During Brain Morphogenesis

  • Chapter
Asymmetric Cell Division

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 45))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133:2467–2476.

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Eckert S, Scardigli R, Guillemot F, Gruss P, Stoykova A (2004) E1-Ngn2/Cre is a new line for regional activation of Cre recombinase in the developing CNS. Genesis 40:195–199.

    Article  PubMed  CAS  Google Scholar 

  • Betschinger J, Koblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685.

    Article  PubMed  CAS  Google Scholar 

  • Britz O, Mattar P, Nguyen L, Langevin L-M, Zimmer C, Alam S, Guillemot F, Schuurmans C (2006) A role for proneural genes in the maturation of cortical progenitor cells. Cereb Cortex 16:i138–i151.

    Article  PubMed  Google Scholar 

  • Cai L, Hayes NL, Takahashi T, Caviness VS Jr, Nowakowski RS (2002) Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. J Neurosci Res 69:731–744.

    Article  PubMed  CAS  Google Scholar 

  • Campos LS, Duarte AJ, Branco T, Henrique D (2001) mDll1 and mDll3 expression in the developing mouse brain: role in the establishment of the early cortex. J Neurosci Res 64:590–598.

    Article  PubMed  CAS  Google Scholar 

  • Canzoniere D, Fariolo-Vecchiolo S, Conti F, Ciotti MT, Tata AM, Augusti-Tocco G, Mattei E, Lakshmana MK, Krizhanovsky V, Reeves SA, Giovannoni R, Castano F, Servadio A, Ben-Arie N, Tirone F (2004) Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J Neurosci 24:3355–3369.

    Article  PubMed  CAS  Google Scholar 

  • Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130:2329–2339.

    Article  PubMed  CAS  Google Scholar 

  • Cayouette M, Whitmore AV, Jeffery G, Raff M (2001) Asymmetric segregation of Numb in retinal development and the influence of pigment epithelium. J Neurosci 21:5643–5651.

    PubMed  CAS  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641.

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, Walsh CA (2002) regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369.

    Article  PubMed  CAS  Google Scholar 

  • Cowan CR, Hyman AA (2004) Asymmetric cell division in C. elegans: Cortical polarity and spindle positioning. Ann Rev Cell Dev Biol 20:427–453.

    Article  CAS  Google Scholar 

  • Das T, Payer B, Cayouette M, Harris WA (2003) In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37:597–609.

    Article  PubMed  CAS  Google Scholar 

  • Delalle I, Takahashi T, Nowakowski RS, Tsai LH, Caviness VS Jr (1999) CyclinE-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization. Cereb Cortex 9:824–832.

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13:68–75.

    Article  PubMed  CAS  Google Scholar 

  • Dyer MA, Livesey FJ, Cepko CL, Oliver G (2003) Nat Genet 34:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Englud C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, interposed progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251.

    Article  CAS  Google Scholar 

  • Fujita S (1962) Kinetics of cellular proliferation. Exp Cell Res 28:52–60.

    Article  PubMed  CAS  Google Scholar 

  • Gaiano N, Fishell G (2002) The role of Notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490.

    Article  PubMed  CAS  Google Scholar 

  • Grandbarbe L, Bouissac J, Rand M, Hrabe de Angelis M, Artavanis-tsakonas S (2003) Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130:1391–1402.

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F (2005) Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol 17:1–9.

    Article  CAS  Google Scholar 

  • Guillemot F, Molnar Z, Tarabykin V, Stoykova A (2006) Molecular mechanism of cortical differentiation. Eur J Neurosci 23:857–868.

    Article  PubMed  Google Scholar 

  • Hand R, Bortone D, Mattar P, Nguyen L, Ik-Tsen Heng J, Guerrier S, Boutt E, Peters E, Barnes AP, Parras C, Shuurmans C, Guillemot F, Polleux F (2005) Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48:45–62.

    Article  PubMed  CAS  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201.

    Article  PubMed  CAS  Google Scholar 

  • Hayder TF, Ang E Jr, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA 100:2890–2895.

    Article  CAS  Google Scholar 

  • Henrique D, Hirsinger E, Adam J, Roux IL, Pourquie O, Ish-Horowicz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signaling in the embryonic chick retina. Curr Biol 7:661–670.

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115:226–264.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Herskowitz I (1992) Mechanism of asymmetric cell division: two Bs not two Bs, that is the question. Cell 68:237–255.

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Kosodo Y (2005) Curr Opin Cell Biol 17:648–657.

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Nakamura S, Osumi N (2000) Demarcation of early mammalian cortical development by differential expression of fringe genes. Dev Brain Res 119:307–320.

    Article  CAS  Google Scholar 

  • Kagayama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:179–188.

    Article  Google Scholar 

  • Kawaguchi A, Ogawa M, Saito K, Matsuzaki F, Okano H, Miyata T (2004) Differential expression of Pax6 and Ngn2 between pair-generated cortical neurons. J Neurosci Res 78:784–795.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Wu HH, Lander AD, Lyons KM, Matzuk MM, Calof AL (2005) GDF11 controls the timing of progenitor cell competence in developing retina. Science 308:1927–1930.

    Article  PubMed  CAS  Google Scholar 

  • Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Kosodo Y, Roper K, Haubensak W, Marzesco A-M, Corbeil D, Huttner W (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324.

    Article  PubMed  CAS  Google Scholar 

  • Landrieu P, Goffinet A (1979) Mitotic spindle fiber orientation in relation to cell migration in the neo-cortex of normal and reeler mouse. Neurosci Lett 13:69–72.

    Article  PubMed  CAS  Google Scholar 

  • Li HS, Wang D, Shen Q, Schonemann MD, Gorski JA, Jones KR, Temple S, Jan LY, Jan YN (2003) Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40:1105–1118.

    Article  PubMed  CAS  Google Scholar 

  • Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8:14–27.

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Jan L, Jan YN (2000) Control of cell divisions in the nervous system: symmetry and asymmetry. Annu Rev Neurosci 23:531–556.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cerdeno V, Noctor SC, Kriegstein A (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16:i152–i161.

    Article  PubMed  Google Scholar 

  • Matsuzaki F (2000) Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol 10:38–44.

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–285.

    Article  PubMed  CAS  Google Scholar 

  • Minaki Y, Mizuhara E, Morimoto K, Nakatani T, Sakamoto Y, Inoue Y, Satoh K, Imai T, Takai Y, Ono Y (2005) Migrating postmitotic neural precursor cells in the ventricular zone extend apical processes and form adherens junctions near the ventricle in the developing spinal cord. Neurosci Res 52:250–262.

    Article  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741.

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145.

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, Nabeshima Y, Shimamura K, Nakafuku M (2001) Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motor neurons. Neuron 31:757–771.

    Article  PubMed  CAS  Google Scholar 

  • Mizuhara E, Nakatani T, Minaki Y, Sakamoto Y, Ono Y, Takai Y (2005) MAGI1 recruits Dll1 to cadherin-based adherens junctions and stabilizes it on the cell surface. J Biol Chem 280:26499–26507.

    Article  PubMed  CAS  Google Scholar 

  • Nadarajah B, Brunstorm JE, Grutzundler J, Wong ROL, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4:143–150.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L, Besson A, Heng JI-T, Shuurmans C, Teboul L, Parras C, Philpott A, Robertis JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20:1511–1524.

    Article  PubMed  CAS  Google Scholar 

  • Nieto M, Shuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401–413.

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720.

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144.

    Article  PubMed  CAS  Google Scholar 

  • Pearson RA, Luneborg NL, Becker DL, Mobbs P (2005) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 16:10803–10814.

    Article  CAS  Google Scholar 

  • Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419:929–934.

    Article  PubMed  CAS  Google Scholar 

  • Petersen PH, Zou K, Krauss S, Zhong W (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 7:803–811.

    Article  PubMed  CAS  Google Scholar 

  • Poggi L, Vitorino M, Masai I, Harris WA (2005) Influences on neural lineage and mode of division in the zebrafish retina in vivo. J Cell Biol 171:991–999.

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Goderie SK, Shen Q, Sterm JH, Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125:3143–3152.

    PubMed  CAS  Google Scholar 

  • Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell gereration: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80.

    Article  PubMed  CAS  Google Scholar 

  • Roegiers F, Jan YN (2004) Asymmetric cell division. Curr Opin Cell Biol 16:195–205.

    Article  PubMed  CAS  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kawaguchi A, Kashiwagi S, Yasugi S, Ogawa M, Miyata T (2003) Dev Growth Differ 45:219–229.

    Article  PubMed  Google Scholar 

  • Sanada K, Tsai L-H (2005) G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122:119–131.

    Article  PubMed  CAS  Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405.

    Article  Google Scholar 

  • Sauer ME, Walker BE (1959) Radiographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–600.

    PubMed  CAS  Google Scholar 

  • Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin L-M, Seibt J, Tang H, Cunningham JM, Dyck R, Walsh C, Campbell K, Polleux F, Guillemot F (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J 23:2892–2902.

    Article  PubMed  CAS  Google Scholar 

  • Seymour RM, Berry M (1975) Scanning and transmission electron microscope studies of interkinetic nuclear migration in the cerebral vesicles of the rat. J Comp Neurol 160:105–125.

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral ncortical stem cells and neuroblast. Development 129:4843–4853.

    PubMed  CAS  Google Scholar 

  • Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743–751.

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333.

    Article  PubMed  CAS  Google Scholar 

  • Silva AO, Ercole CE, McLoon SC (2002) Plane of cell cleavage and numb distribution during cell division relative to cell differentiation in the developing retina. J Neurosci 22:7518–7525.

    PubMed  CAS  Google Scholar 

  • Smart IHM (1972) Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J Anat 111:365–380.

    PubMed  CAS  Google Scholar 

  • Smart IHM (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91.

    PubMed  CAS  Google Scholar 

  • Sun Y, Goderie SK, Temple S (2005) Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45:873–886.

    Article  PubMed  CAS  Google Scholar 

  • Sunabori T, Matsuzaki Y, Nagai T, Tokunaga A, Miyata T, Tabata H, Nakajima K, Miyawaki A, Okano H (2004) Visualizing neural progenitor cells with a destabilized fluorescent reporter: Nestin-d4-Venus. Soc Neurosci Abstr 32.9.

    Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15:6046–6057.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1996) Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J Neurosci 16:5762–5776.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Goto T, Miyama S, Nowakowski RS, Caviness VS Jr (1999a) Sequence of neuron origin and neocortical laminar fate: ralation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19:10357–10371.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Bhide PG, Goto T, Miyama S, Caviness VS Jr (1999b) Proliferative behavior of the murine cerebral wall in tissue culture: cell cycle kinetics and checkpoints. Exp Neurol 156:407–417.

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758.

    Article  PubMed  CAS  Google Scholar 

  • Temple S (1990) Characteristics of cells that give rise to the central nervous system. J Cell Sci 97:213–218.

    PubMed  Google Scholar 

  • Tokunaga A, Kohyama J, Yoshida T, Nakao K, Sawamoto K, Okano H (2004) Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem 90:142–154.

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Maynard TM, Jones SU, Weston JA (1999) NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563.

    Article  PubMed  CAS  Google Scholar 

  • Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Zigman M, Cayouette M, Charalambous C, Schleiffer A, Hoeller O, Dunican D, McCudden CR, Firnburg N, Barres B, Siderovski DP, Knoblich JA (2005) Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48:539–545.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Miyata, T. (2007). Asymmetric Cell Division During Brain Morphogenesis. In: Macieira-Coelho, A. (eds) Asymmetric Cell Division. Progress in Molecular and Subcellular Biology, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69161-7_6

Download citation

Publish with us

Policies and ethics