Skip to main content

Asymmetric Distribution of DNA Between Daughter Cells with Final Symmetry Breaking During Aging of Human Fibroblasts

  • Chapter
Asymmetric Cell Division

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 45))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allsop RC, Vaziri H, Patterson C, Goldstein S, Younglali EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118.

    Article  Google Scholar 

  • Bemiller PM, Miller JE (1979) Cytological changes in senescing WI-38 cells. A statistical analysis. Mech Ageing Dev 10:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Berumen L, Macieira-Coelho A (1977) Changes in albumin uptake during the life span of human fibroblasts in vitro. Mech Ageing Dev 6:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Bittles AH, Harper N (1984) Increased glycolysis in aging cultured human diploid fibroblasts. Biosci Rep 4:751–756.

    Article  PubMed  CAS  Google Scholar 

  • Bond JA, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104.

    PubMed  CAS  Google Scholar 

  • Bosmann HB, Gutheil RL Jr, Case KR (1976) Loss of a critical neutral protease in ageing WI-38 cells. Nature 261:499–501.

    Article  PubMed  CAS  Google Scholar 

  • Brissenden JE, Cox DW (1982) Alpha-2 macroglobulin production by cultured human fibroblasts. Som Cell Genet 8:289–305.

    Article  CAS  Google Scholar 

  • Celis JE, Bravo R (1984) Synthesis of the nuclear protein cyclin in growing, senescent and morphologically transformed human skin fibroblasts. FEBS Lett 165:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882.

    Article  PubMed  CAS  Google Scholar 

  • Dell'Orco RT, Whittle WL, Macieira-Coelho A (1986) Changes in the high order organization of DNA during aging of human fibroblast-like cells. Mech Ageing Dev 35:199–208.

    Article  PubMed  Google Scholar 

  • Dick JE, Wright JA (1985) On the importance of deoxyribonucleotide pools in the senescence of cultured human diploid fibroblasts. FEBS Lett 179:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Dimri G, Lee G, Basile M, Acosta M, Scott G, Roskelly C, Medranos E, Linskens M, Rubellj I, Pereira-Smith OM, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367.

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Gao S, Scott RE (2001) Senescence represses the nuclear localization of the serum response factor and differentiation regulates its nuclear localization with lineage specificity. J Cell Sci 114:1012–1016.

    Google Scholar 

  • Grassilli E, Bellesia D, Salomoni P, Croce MA, Sikora E, Radiszewska E, Tesco G, Vergelli M, Latorraca S, Barbieri D, Fagiolo U, Santacaterina S, Amaducci L, Sorbi S, Franceschi C (1996) C-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians. Biochem Biopys Res Commun 226:517–523.

    Article  CAS  Google Scholar 

  • Gupta RS (1980) Senescence of cultured human diploid fibroblasts. Are mutations responsible? J Cell Phys 103:209–216.

    Article  CAS  Google Scholar 

  • Hards RG, Patterson D (1986) Variation of glycinamide ribonucleotide synthetase levels during in vitro aging of human fibroblasts. Implications for gene dosage studies. Mech Ageing Dev 36:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–283.

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621.

    Article  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, p21 (CIPI) but not p16 (INK4a). Mol Cell 14:501–513.

    Article  PubMed  CAS  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy M (2006) Cellular senescence in aging primates. Science 311:1257.

    Article  PubMed  CAS  Google Scholar 

  • Holtzer M (1970) Myogenesis. In: Schejde A, DeVellis J (eds) Cell differentiation. VanNostrand, Reynhold and Co, New York, pp 476–503.

    Google Scholar 

  • Icard-Liepkalns C, Dolly J, Macieira-Coelho A (1986) Gene reorganization during serial proliferation of normal human fibroblasts. Bioch Bioph Res Comm 141:112–123.

    Article  CAS  Google Scholar 

  • Kahn A, Meienhofer MC, Guillouzo A, Cottreau D, Baffet G, Henry J, Dreyfus JC (1982) Modifications of phosphoproteins and protein kinases occurring with in vitro aging of cultured human cells. Gerontology 28:360–370.

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Matsuo M (1983) Responsiveness of human lung diploid fibroblasts ageing in vitro to epidermal growth factor: saturation densities and life span. Mech Ageing Dev 22:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Krishna DR, Sperker B, Fritz P, Klotz U (1999) Does pH 6 b-galactosidase activity indicate cell senescence? Mech Ageing Dev 109:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Kuo CH, Wells WW (1978) Galactosidases from rat mammary gland. J Biol Chem 253:3550–3556.

    PubMed  CAS  Google Scholar 

  • Lee HC, Paz MA, Gallop PM (1982) Low density lipoprotein receptor binding in aging human diploid fibroblasts in culture. J Biol Chem 257:8912–8927.

    PubMed  CAS  Google Scholar 

  • Liu AYC, Chang ZF, Chen KY (1986) Increased level of cAMP-dependent protein kinase in aging human lung fibroblasts. J Cell Phys 128:149–154.

    Article  CAS  Google Scholar 

  • Macieira-Coelho A (1983) Changes in membrane properties associated with cellular aging. Intl Rev Cytol 83:183–220.

    Article  CAS  Google Scholar 

  • Macieira-Coelho A (1988) Biology of normal proliferating cells in vitro. Relevance for in vivo aging. Karger SA, Basel.

    Google Scholar 

  • Macieira-Coelho A (1991) Chromatin reorganization during senescence of proliferating cells. Mutat Res 256:81–104.

    PubMed  CAS  Google Scholar 

  • Macieira-Coelho A (1995) The last mitoses of the human fibroblast proliferative life span, physiopathologic implications. Mech Ageing Dev 82:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Macieira-Coelho A, Berumen L (1973) The cell cycle during growth inhibition of human embryonic fibroblasts in vitro. Proc Soc Exp Biol Med 144:43–48.

    PubMed  CAS  Google Scholar 

  • Macieira-Coelho A, Puvion-Dutilleul F (1989) Evaluation of the reorganization in the high-order structure of DNA occurring during cell senescence. Mutat Res 219:165–170.

    PubMed  CAS  Google Scholar 

  • Macieira-Coelho A, Taboury F (1982) A reevaluation of the changes in proliferation in human fibroblasts during ageing in vitro. Cell Tiss Kinet 15:213–224.

    CAS  Google Scholar 

  • Macieira-Coelho A, Garcia-Giralt E, Adrian M (1971) Changes in lysosomal enzymes associated structures in human fibroblasts kept in resting stage. Proc Soc Exp Biol Med 138:712–718.

    Google Scholar 

  • Macieira-Coelho A, Bengtson A, Van der Ploeg M (1982) Distribution of DNA between sister cells during serial subcultivation of human fibroblasts. Histochemistry 75:11–24.

    Article  PubMed  CAS  Google Scholar 

  • Martin GM, Sprague CA, Norwood TH, Pendergrass WR (1974) Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia. Am J Path 74:137–154.

    PubMed  CAS  Google Scholar 

  • Matsumura T, Miyashita S, Ohno T (1979) Conversion of proliferation and production of the colony stimulating factor during serial passage of mouse fibroblasts in culture. Cell Struct Funct 4:267–274.

    Article  Google Scholar 

  • Mitsui Y, Schneider EL (1976) Characterization of fractionated human diploid fibroblast populations. Exp Cell Res 103:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Park WY, Hwang CI, Kang MJ, Seo JH, Chung JH, Kim YS, Lee JH, KimH, Yoo HJ, Seo JS (2001) Gene profile of replicative senescence is different from progeria or elderly donor. Exp Cell Res 282:934–939.

    CAS  Google Scholar 

  • Paz MA, Torrelio M, Gallop PM (1981) X-linked processes in serially passaged aging human diploid cells. J Geront 36:142–151.

    PubMed  CAS  Google Scholar 

  • Pignolo RJ, Cristofalo VJ, Rotenberg MO (1993) Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the G0 stage. J Biol Chem 268:8949–8957.

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Macieira-Coelho A (1982) Ultrastructural organization of nucleoproteins during aging of cultured human embryonic fibroblasts. Exp Cell Res 138:423–429.

    Article  PubMed  CAS  Google Scholar 

  • Raes M, Genens G, Brabander M, Remacle J (1983) Microtubules and microfilaments in ageing hamster embryo fibroblasts in vitro. Exp Gerontol 18:241–254.

    Article  PubMed  CAS  Google Scholar 

  • Schneider EL, Fowlkes BJ (1976) Measurement of DNA content and cell volume in senescent human fibroblasts utilizing flow multiparameter single cell analysis. Exp Cell Res 98:298–302.

    Article  PubMed  CAS  Google Scholar 

  • Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is b-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171.

    Article  PubMed  CAS  Google Scholar 

  • Staiano-Coico L, Darzynkiewicz Z, Melamed MR, Weksler M (1982) Changes in DNA content of human blood mononuclear cells with senescence. Cytometry 3:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt M (1985) Effect of donor age on clonal differentiation of human skin fibroblasts in vitro. Gerontology 31:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Zeydel M (1982) Alpha-glutamyl transpeptidase and glutathione in aging IMR-90 fibroblasts and in differentiating 3T3 L1 preadipocytes. Archs Biochem Biohys 214:260–268.

    Article  CAS  Google Scholar 

  • Van't Hof J, Bjerknes CA (1982) Cells of pea (pisum sativum) that differentiate from G2 phase have extrachromosomal DNA. Mol Cell Biol 2:339–345.

    PubMed  Google Scholar 

  • Yamagishi H, Kunisada T, Iwakura Y, Nishimuno Y, Ogiso Y, Matsuhiro A (1983) Emergence of extrachromosomal circular DNA complexes as one of the earliest signals of cellular differentiation in the early development of mouse embryo. Devel Growth Different 25:563–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Macieira-Coelho, A. (2007). Asymmetric Distribution of DNA Between Daughter Cells with Final Symmetry Breaking During Aging of Human Fibroblasts. In: Macieira-Coelho, A. (eds) Asymmetric Cell Division. Progress in Molecular and Subcellular Biology, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69161-7_10

Download citation

Publish with us

Policies and ethics