Skip to main content

2-D Visualizations of the Frequency Contents of Lamb Waves in a Bovine Cortical Tibia

  • Conference paper
4th Kuala Lumpur International Conference on Biomedical Engineering 2008

Part of the book series: IFMBE Proceedings ((IFMBE,volume 21))

  • 75 Accesses

Abstract

This study observes the frequency contents of Lamb waves propagating in a bone and represents them in 2-d graphics. A non-contact Lamb wave measurement technique, scanning laser vibrometry, is proposed to examine a bovine cortical tibia in vitro. The Lamb waves works at the center frequency of 84KHz. Only the fundamental modes, a 0 and s 0, were expected to occur. Defining the propagating Lamb wave modes is further performed using wavelet transform analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Viktorov IA (1967) Rayleigh and Lamb waves: Physical theory and applications. Plenum, New York

    Google Scholar 

  2. Alleyne DN (1991) The nondestructive testing of plates using ultrasonic Lamb waves. In: Department of Mechanical Engineering-Imperial College of Science, Technology and Medicine. University of London, London

    Google Scholar 

  3. Alleyne DN, Cawley P (1992) Optimization of Lamb wave inspection techniques. NDT&E International 25:11–22

    Article  Google Scholar 

  4. Moreno E, Acevedo P (1998) Thickness measurement in composite materials using Lamb waves. Ultrasonics 35:581–586

    Article  Google Scholar 

  5. Moreno E, Avecedo P, Castillo M (2000) Thickness measurement in composite materials using Lamb waves viscoelastic effects. Ultrasonics 37:595–599

    Article  Google Scholar 

  6. Kundu T, Maslov K (1997) Material interface inspection by Lamb waves. Int. J. Solids and Struct. 34:3885–3901

    Article  MATH  Google Scholar 

  7. Rose JL, Ditri JJ (1992) Pulse echo and through transmission Lamb wave techniques for adhesive bond inspection. British Journal of NDT 34:591–594

    Google Scholar 

  8. Lefebvre F, Deblock Y, Campistron P, Ahite D, Fabre JJ (2002) Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. J Biomed Mater Res 63:441–446

    Article  Google Scholar 

  9. Nicholson PH, Moilanen P, Karkkainen T, Timonen J, Cheng S (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23:755–768

    Article  Google Scholar 

  10. Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43:672–680

    Article  Google Scholar 

  11. Leong WH, Staszewski WJ, Lee BC, Scarpa F (2005) Structural health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection. Smart Mater. Struct. 14:1387–1395

    Article  Google Scholar 

  12. Mallet L, Lee BC, Staszewski WJ, Scarpa F (2004) Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection. Smart Mater. Struct. 13:261–269

    Article  Google Scholar 

  13. Pai PF, Oh Y, Lee SY (2002) Detection of defects in circular plates using a scanning laser vibrometer. Struct. Health Monitor. 1 63–88

    Article  Google Scholar 

  14. Staszewski WJ, Lee BC, Mallet L, Scarpa F (2004) Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater. Struct. 13:251–260

    Article  Google Scholar 

  15. Waldron K, Ghoshal A, Schulz MJ, Sundaseran MJ, Ferguson F, Pai PF, Chung JH (2002) Demage detection using finite elements and laser operational deflection shapes. Fin. Elem. Anal. Des. 38:193–226

    Article  MATH  Google Scholar 

  16. Koehler B, Hentges G, Mueller W (1998) Improvement of ultrasonic testing of concrete by combining signal conditioning methods, scanning laser vibrometry and space averaging techniques. NDT&E International 31:281–287

    Article  Google Scholar 

  17. Eisner E (1964) The design of resonant vibrators. New York: Academics

    Google Scholar 

  18. Eisner E (1964) Resonant vibration of a cone. J Acoust Soc Am 36:309–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manik Hapsara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hapsara, M., Iliescu, D. (2008). 2-D Visualizations of the Frequency Contents of Lamb Waves in a Bovine Cortical Tibia. In: Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S., Ting, HN. (eds) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. IFMBE Proceedings, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69139-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69139-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69138-9

  • Online ISBN: 978-3-540-69139-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics