Skip to main content

Applications of high-resolution satellite remote sensing for northern Pacific volcanic arcs

  • Chapter
  • First Online:
Monitoring Volcanoes in the North Pacific

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

There has been a dramatic increase in the remote-sensing data volume being acquired from Earth orbit over the past two decades. Although none of these satellite instruments were designed specifically to monitor volcanic eruptions, many government agencies and university partnerships are currently utilizing them for this task. Most rely on high temporal/moderate spatial resolution instruments (e.g., MODIS, AVHRR, GOES) to monitor transient and temporally variable anomalies such as eruption clouds and hot spots. The uses of these instruments for such purposes are detailed in Chapters 3, 4 and 6. However, in order to better develop a quantitative scientific basis from which to model transient geological and meteorological hazards as well as map small-scale phenomena, higher spatial/spectral resolution datasets are commonly needed. Whereas moderate-resolution data may be frequently received directly from the satellite at many institutes globally, access to, and temporal frequency of, coverage from high-resolution instruments has been limited because much of the data must be specially acquired and purchased using a few government (e.g., ASTER, ETM+) and commercial (e.g., IKONOS, QuickBird) providers. Despite this, high-resolution data use has increased greatly as their capabilities have become recognized. The data from these sensors are particularly useful for numerous aspects of volcanic remote sensing. For example, high spatial resolution/multispectral thermal infrared data are critical for monitoring low-temperature anomalies and mapping both chemical and textural variations on volcanic surfaces. The data can also be integrated into a near-real time monitoring effort that is based primarily on high temporal/moderate spatial resolution orbital data. This synergy allows small-scale activity to be targeted for science and response, and the establishment of a calibration baseline between each sensor. The focus of this chapter is to highlight how these high spatial resolution (<100 m/pixel) data, commonly with more spectral capabilities, are being used for volcanic mapping and monitoring in the North Pacific region. A review of volcanic remote-sensing research using these data is presented with attention paid to case studies of new research. These studies showcase the capabilities of higher resolution sensors to map pyroclastic flows and detect changes over time in those flows (Mt. Augustine Volcano), and to document detection of volcanic terrains using a fusion approach of data from the visible to the radar wavelengths (Westdahl Volcano).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M. (2000). The Advanced Spaceborne Thermal Emission And Reflectance Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sensing, 21, 847-859.

    Google Scholar 

  • Abrams, M.; Glaze, L.; Sheridan, M. (1991). Monitoring Colima Volcano, Mexico, using satellite data, Bull. Volcanol., 53, 571-574.

    Google Scholar 

  • Adleman, J.N. (2005). Analysis of composition and chronology of dome emplacement at Black Peak, Alaska utilizing ASTER remote sensing data and field-based studies, M.S. thesis, University of Alaska Fairbanks, 136 pp.

    Google Scholar 

  • Adleman, J.N.; Larsen, J.F.; Ramsey, M.S.; McGimsey, R.G.; Neal, C.A. (2003). Analysis of composition and chronology of dome emplacement at Black Peak, Alaska utilizing ASTER remote sensing data and field-based studies, EOS, Trans. Am. Geophys. Union, 84(46), Fall Meet. Suppl., Abs. V31G-07.

    Google Scholar 

  • Begét, J.E.; Kienle, J. (1992). Cyclic formation of debris avalanches at Mount St. Augustine Volcano, Nature, 356, 701-704.

    Google Scholar 

  • Begét, J.E.; Larsen, J.F.; Neal, C.A.; Nye, C.J.; Schaefer, J.R. (2005). Preliminary Volcano-hazard Assessment for Okmok Volcano, Unmak Island, Alaska, Alaska Division of Geological & Geophysical Surveys Report of Investigation 2004-3, 32 pp., 1 sheet, scale 1:150,000.

    Google Scholar 

  • Brown, M.E.; Nicolaysen, K.; Dehn, J.; Myers, J.D. (under review). SAR and petrologic data illuminate the eruption sequence of post-caldera andesites, Yunaska Volcano, Aleutian Arc, J. Volcanol. Geothermal Res.

    Google Scholar 

  • Byrnes, J.M. (2002). Lava flow field emplacement studies of Mauna Ulu (Kllauea Volcano, Hawaii, USA) and Venus, using field and remote sensing analyses. Ph.D. dissertation, University of Pittsburgh, Pittsburgh, 191 pp.

    Google Scholar 

  • Byrnes, J.M.; Ramsey, M.S.; Crown, D.A. (2004). Em-placement of the Mauna Ulu flow field, Kllauea Volcano, Hawaii: New insights from ASTER and the MASTER airborne simulator, J. Volcanol. Geothermal Res., 135, 169-193.

    Google Scholar 

  • Campbell B.A.; Shepard, M.K. (1996). Lava flow surface roughness and depolarized radar scattering, J. Geophys. Res., 101, 18941-18951.

    Google Scholar 

  • Campbell, B.A.; Arvidson, R.E.; Shepard, M.K. (1993). Radar polarization of volcanic and playa surfaces: Applications to terrestrial remote sensing and Venus data interpretation, J. Geophys. Res., 98, 17099-17113.

    Google Scholar 

  • Carn, S.A. (1999). Application of synthetic aperture radar (SAR) imagery to volcano mapping in the humid tropics: A case study in East Java, Indonesia, Bull. Volcanol., 61, 92-105.

    Google Scholar 

  • Carter, A.J.; Ramsey, M.S. (2009). ASTER- and field-based observations at Bezymianny Volcano: Focus on the May 2007 pyroclastic flow deposit, Remote Sensing of Environment, 10, 2142-2151, doi: 10.1016/ j.rse.2009.05.020.

    Google Scholar 

  • Cashman, K.; Blundy, J. (2000). Degassing and crystal-lization of ascending andesite and dacite, Philo-sophical Transactions of the Royal Society, 358, 1487-1513.

    Google Scholar 

  • Clark, R.N. (1993). Mapping Minerals with Imaging Spectroscopy, USGS Bulletin 2039, U.S. Geological Survey, Office of Mineral Services, Reston, VA, pp. 141-150.

    Google Scholar 

  • Coombs, M.L.; Neal, C.A.; Wessels, R.L.; McGimsey, R.G. (2006). Geothermal Disruption of Summit Glaciers at Mount Spurr Volcano, 2004-6: An Unusual Manifestation of Volcanic Unrest, USGS Prof. Paper 1732-B, U.S. Geological Survey, Reston, VA, 33 pp.

    Google Scholar 

  • Dean, K.G.; Dehn, J.; Papp, K.R.; Smith, S.; Izbekov, P.; Peterson, R.; Kearney, C.; Steffke, A. (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska, J. Volcanol. Geothermal Res., 135, 51-73.

    Google Scholar 

  • Dean, K.G.; Engle, K.; Partington, K.; Groves, J.; Dehn, J. (2002). Analysis of surface processes using SAR data: Westdahl Volcano, Alaska, Int. J. Remote Sensing, 23, 4529-4550.

    Google Scholar 

  • Dehn, J.; Dean, K.G.; Engle, K. (2000). Thermal monitoring of North Pacific volcanoes from space, Geology, 28, 755-758.

    Google Scholar 

  • Detterman, R.L.; Miller, T.P.; Yount, M.E.; Wilson, F.H. (1981). Geologic Map of the Chignik and Sutwik Island Quadrangles, Alaska 1: 250,000, Map I-1229, U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Donegan, S.J.; Flynn, L.P. (2004). Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing-1 Advanced Land Imager over active lava flows, J. Volcanol. Geothermal Res., 135, 105-126.

    Google Scholar 

  • Fink, J.H.; Manley, C.R. (1987). Origin of pumiceous and glassy textures in rhyolite flows and domes, in: J.H. Fink (Ed.), The Emplacement of Silicic Domes and Lava Flows, GSA Spec. Pap. 212, Geological Society of America, Boulder, CO, pp. 77-88.

    Google Scholar 

  • Flynn, L.P.; Mouginis-Mark, P.J.; Horton, K.A. (1994). Distribution of thermal areas on an active lava flow field: Landsat observations of Kllauea, Hawaii, July, 1991, Bull. Volcanol., 56, 284-296.

    Google Scholar 

  • Flynn, L.P.; Harris, A.J.L.; Rothery, D.A.; Oppenheimer, C. (2000). High-spatial resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data, in P.J. Mouginis-Mark, J.A. Crisp, J.H. Fink (Eds.), Remote Sensing of Active Volcanism, AGU Monograph 116, American Geophysical Union, Washington, D.C., pp. 161-177.

    Google Scholar 

  • Francis P.W. (1979). Infra-red techniques for volcano monitoring and prediction: A review, J. Geological Society London., 136, 355-359.

    Google Scholar 

  • Francis, P.W.; Rothery, D.A. (1987). Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar Volcano, northern Chile, Geology, 15, 614-617.

    Google Scholar 

  • Francis, P.W.; Rothery, D.A. (2000). Remote sensing of active volcanoes, Annu. Rev. Earth Planet. Sci., 28, 81-106.

    Google Scholar 

  • Fujisada, H.; Bailey, G.B.; Kelly, G.G.; Hara, S.; Abrams, M.J. (2005). ASTER DEM performance, IEEE Trans. Geosci. Remote Sensing, 43, 2707-2714.

    Google Scholar 

  • Gaddis, L.; Mouginis-Mark, P.; Singer, R.; Kaupp, V. (1989) Geologic analyses of Shuttle Imaging Radar (SIR-B) data of Kīlauea Volcano, Hawai’i, Geol. Soc. Am. Bull., 101, 317–332.

    Google Scholar 

  • Gaddis, L.R.; Mouginis-Mark, P.J.; Hayashi, J.N. (1990). Lava flow textures: SIR-B radar image texture, field observations, and terrain measure-ments, Photogram. Eng. Remote Sensing, 56, 211-224.

    Google Scholar 

  • Gens, R.; Logan, T. (2003). Alaska Satellite Facility Software Tools, Geophysical Institute, University of Alaska Fairbanks ( www.asf.alaska.edu ), 186 pp.

  • Gillespie, A.R.; Kahle, A.B.; Walker, R.E. (1986). Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches, Remote Sensing of Environment, 20, 209-235.

    Google Scholar 

  • Greeley, R.; Martel, L. (1988). Radar observations of basaltic lava flows, Craters of the Moon, Idaho, Int. J. Remote Sensing, 9, 1071-1085.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. (1998). Calculation of lava effusion rates from Landsat TM data, Bull. Volcanol., 60, 52-71.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Rothery, D.A.; Oppenheimer, C.; Sherman, S.B. (1999). Mass flux meas-urements at active lava lakes: Implications for magma recycling, J. Geophys. Res., 104, 7117-7136.

    Google Scholar 

  • Harris, A.J.L.; Pilger, E.; Flynn, L.P.; Garbeil, H.; Mouginis-Mark, P.J.; Kauahikaua, J.; Thornber, C. (2001). Automated, high temporal resolution, thermal analysis of Kllauea Volcano, Hawaii, using GOES satellite data, Int. J. Remote Sensing, 22, 945-967.

    Google Scholar 

  • Harris, A.J.L.; Rose, W.I.; Flynn, L.P (2003). Temporal trends in lava dome extrusion at Santiaguito 1922-2000, Bull. Volcanol., 65, 77-89.

    Google Scholar 

  • Hook, S.J.; Rast, M. (1990). Mineralogic mapping using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Shortwave Infrared (SWIR) data acquired over Cuprite, Nevada, AVIRIS Airborne Geosci. Workshop Proc. 1990, pp. 199-207.

    Google Scholar 

  • Huntington, J.F. (1996). The role of remote sensing in finding hydrothermal mineral deposits on Earth, in G. Bock, J. Goode (Eds.), Evolution of Hydrothermal Ecosystems on Earth (and Mars?), John Wiley & Sons, Chichester, U.K., pp. 214-230.

    Google Scholar 

  • Kääb, A. (2005). Remote Sensing of Mountain Glaciers and Permafrost Creep, Geographisches Institut der Universitat Zurich, 264 pp.

    Google Scholar 

  • Kienle, J.; Dean, K.G.; Garbeil, H. (1990). Satellite surveillance of volcanic ash plumes of the ongoing eruptions of Redoubt Volcano, Alaska, EOS, Trans. Am. Geophys. Union, 71(17), Fall Meet. Suppl., 649.

    Google Scholar 

  • Krueger, A.J.; Walter, L.S.; Bhartia, P.K.; Schnetzler, C.C.; Krotkov, N.A.; Sprod, I.; Bluth, G.J.S. (1995). Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments, J. Geophys. Res., 100, 14057-14076.

    Google Scholar 

  • Lopes, A.; Touzi, R.; Nezry, E. (1990). Adaptive speckle filters and scene heterogeneity, IEEE Trans. Geosci. Rem. Sens., 28, 992-1000.

    Google Scholar 

  • Lu, Z.; Fielding, E.; Patrick, M.R.; Trautwein, C.M. (2003a). Estimating lava volume by precision combi-nation of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska, IEEE Trans. Geosci. Rem. Sens., 41, 1428-1436.

    Google Scholar 

  • Lu, Z.; Masterlark, T.; Dzurisin, D.; Rykhus, R.; Wicks, Jr., C. (2003b). Magma supply dynamics at Westdahl Volcano, Alaska, modeled from satellite radar interferometry, J. Geophys. Res., 108, 2354, doi: 10.1029/2002JB002311.

  • Lu, Z.; Rykhus, R.; Masterlark, T.; Dean, K.G. (2004). Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery, Remote Sensing of Environment, 91, 345-353.

    Google Scholar 

  • Melnik, O.; Sparks, R.S.J. (1999). Nonlinear dynamics of lava dome extrusion, Nature, 402, 37-41.

    Google Scholar 

  • Miller, T.P.; Casadevall, T.J. (2000). Volcanic ash hazards to aviation, in H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, J. Stix (Eds.), Encyclopedia of Volcanoes, pp. 915-930, Academic Press, San Francisco.

    Google Scholar 

  • Miller, T.P.; McGimsey, R.G.; Richter, D.H.; Riehle, J.R.; Nye, C.J.; Yount, M.E.; Dumoulin, J.A. (1998). Catalog of the Historically Active Volcanoes of Alaska, USGS Open-File Report 98-582, U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Mouginis-Mark, P.J.; Crisp, J.A.; Fink, J.H. (2000). Remote Sensing of Active Volcanism, AGU Monograph 116, American Geophysical Union, Washington, D.C., 272 pp.

    Google Scholar 

  • Moxey, L.; Guritz, R.; Dehn, J.; Price, E. (2002). Surface change detection, topographic and geologic mapping of Okmok Volcano, Alaska, using high-resolution AIRSAR sensor data, paper (S1) presented at AIRSAR Earth Science and Application Workshop, NASA-JPL, Pasadena, CA, 10 pp.

    Google Scholar 

  • Nakada, S.; Miyake, Y.; Sato, H.; Oshima, O.; Fujinawa, A. (1995). Endogenous growth of dacite dome at Unzen volcano (Japan), 1993-1995, Geology, 13, 157-160.

    Google Scholar 

  • Nicolaysen, K.E.; Myers, J.D.; Linneman, S.R.; Lamb, D. (1992). Geologic relations of the Yunaska Volcanic Complex, Central Aleutian Arc, EOS, Trans. Am. Geophys. Union, Fall Meeting.

    Google Scholar 

  • Nye, C.J.; Keith, T.E.C.; Eichelberger, J.C.; Miller, T.P.; McNutt, S.R.; Moran, S.; Schneider, D.J.; Dehn, J.; Schaefer, J.R. (2002). The 1999 eruption of Shishaldin Volcano, Alaska: Monitoring a distant eruption, Bull. Volcanol., 64, 507-519.

    Google Scholar 

  • Patrick, M.R.; Dehn, J.; Papp, K.R.; Lu, Z.; Dean, K.; Moxey, L.; Izbekov, P.; Guritz, R. (2003). The 1997 eruption of Okmok Volcano, Alaska: A synthesis of remotely sensed imagery, J. Volcanol. Geothermal Res., 127, 87-105.

    Google Scholar 

  • Patrick, M.; Dean, K.; Dehn, J. (2004). Active mud volcanism observed with Landsat 7 ETM+, J. Vol. Geophys. Res., 131, 307-320.

    Google Scholar 

  • Patrick, M.R.; Smellie, J.L.; Harris, A.J.L.; Wright, R.; Dean, K.; Izbekov, P.; Garbeil, H.; Pilger, E. (2005). First recorded eruption of Mount Belinda Volcano (Montagu Island), South Sandwich Islands, Bull. Volcanol., 67, 415-422.

    Google Scholar 

  • Pieri, D.; Abrams, M. (2004). ASTER watches the world’s volcanoes: A new paradigm for volcanological observations from orbit, J. Volcanol. Geothermal Res., 135, 13-28.

    Google Scholar 

  • Pieri, D.C.; Glaze, L.S.; Abrams, M.J. (1990). Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna, Geology, 18, 1018-1022.

    Google Scholar 

  • Pieri, D.C.; Khrenov, A.P.; Miller, T.P.; Zharinov, S.E.; Realmuto, V.; Abrams, M.; Glaze, L.S.; Kahle, A.B.; Drozhnin, V.; Divgalo, V.; Kirianov, V.; Abbott, E.; Chernobieff, S. (1997). Joint effort results in first TIMS survey of Kamchatka volcanoes, EOS, Trans. Am. Geophys. Union, 78(12), 125-128.

    Google Scholar 

  • Plaut, J.J.; Anderson, S.W.; Crown, D.A.; Stofan, E.R.; van Zyl, J.J. (2004). The unique radar properties of silicic lava domes, J. Geophys. Res., 109, E03001, doi: 10.1029/2002JE002017.

  • Pohl, C.; Van Genderen, J.L. (1998). Review article. Multisensor image fusion in remote sensing: Concepts, methods and applications, Int. J. Remote Sensing, 19, 823-854, doi: 199810.1080/014311698215748.

    Google Scholar 

  • Ramsey, M.S.; Dehn, J. (2004). Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: The integration of high-resolution ASTER data into near real-time monitoring using AVHRR, J. Volcanol. Geothermal Res., 135, 127-146.

    Google Scholar 

  • Ramsey, M.S.; Fink, J.H. (1999). Estimating silicic lava vesicularity with thermal remote sensing: A new technique for volcanic mapping and monitoring, Bull. Volcanol., 61, 32-39.

    Google Scholar 

  • Ramsey, M.S.; Flynn, L.P. (2004). Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System, J. Volcanol. Geothermal Res., 135, 1-11.

    Google Scholar 

  • Realmuto, V.J.; Abrams, M.J.; Buongiorno, M.F.; Pieri, D.C. (1994). The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986, J. Geophys. Res., 99, 481-488.

    Google Scholar 

  • Riehle, J. R. (1985). A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet region, Alaska, J. Volc. Geotherm. Res., 26, 37-74.

    Google Scholar 

  • Rowland, S.K.; Smith, G.A.; Mouginis-Mark, P.J. (1994). Preliminary ERS-1 observations of Alaskan and Aleutian Volcanoes, Remote Sensing of Environ-ment, 48, 358-369.

    Google Scholar 

  • Rowland, S.K.; MacKay, M.E.; Garbeil, H.; Mouginis-Mark, P.J. (1999). Topographic analyses of Kllauea Volcano, Hawai’i, from interferometric airborne radar, Bull. Volcanol., 61, 1-14.

    Google Scholar 

  • Smith, S.J. (2005). Chronologic multisensor assessment for Mount Cleveland, Alaska from 2000 to 2004 focusing on the 2001 eruption, M.S. thesis, University of Alaska Fairbanks, 141 pp.

    Google Scholar 

  • Solberg, A.H.S.; Jain, A.K.; Taxt, T. (1994). Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images, IEEE Trans. Geosci. Remote Sensing, 32, 768-778.

    Google Scholar 

  • Tou, J.T.; Gonzalez, R.C. (1974). Pattern Recognition Principles, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J. (2005). Monitoring eruptive activity at Mount St. Helens with TIR image data, Geophys. Res. Lett., 32, L19305, doi: 10.1029/ 2005GL024112.

    Google Scholar 

  • Wadge, G. (2003). A strategy for the observation of volcanism on Earth from space, Philosophical Trans. Royal Society London, 361, 145-156.

    Google Scholar 

  • Waitt, R.B.; Beget, J.E. (1996). Provisional Geologic Map of Augustine Volcano, Alaska, USGS Open-File Report 96-516, U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Watson, I.M.; Realmuto, V.J.; Rose, W.I.; Prata, A.J.; Bluth, G.J.S.; Gu, Y.; Bader, C.E.; Yu, T. (2004). Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer, J. Volcanol. Geothermal Res., 135, 75-89.

    Google Scholar 

  • Wessels, R.; Senyukov, S.; Tranbenkova, A.; Ramsey, M.; Schneider, D. (2004). Detecting small geothermal features at Northern Pacific volcanoes with ASTER thermal infrared data, EOS, Trans. Am. Geophys. Union, 85(47), Fall Meet. Suppl., Abstract V33C-1479.

    Google Scholar 

  • Wessels, R.; Ramsey, M.; Dean, J.; Senyukov, S. (2005). Mapping elevated temperatures on a thirty-year-old basalt flow of New Tolbachik Volcano using satellite and ground-based thermal infrared, EOS, Trans. Am. Geophys. Union, 86(52), Fall Meeting Suppl., Abstract V31A-0605.

    Google Scholar 

  • Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. (2004). MODVOLC: Near-real-time ther-mal monitoring of global volcanism, J. Volcanol. Geothermal Res., 135, 29-49.

    Google Scholar 

  • Zebker, H.A.; Madsen, S.N.; Martin, J.; Wheeler, K.B.; Miller, T.; Lou, Y.; Alberti, G.; Vetrella, S.; Cucci, A. (1992). The TOPSAR interferometric radar topo-graphic mapping instrument, IEEE Trans. Geosci. Remote Sensing, 30, 933-940.

    Google Scholar 

  • Zebker, H.A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P.J. (1996). Analysis of active lava flows on Kllauea Volcano, Hawaii, using SIR-C radar corre-lation measurements, Geology, 24, 495-498.

    Google Scholar 

  • Zebker, H.A.; Amelung, F.; Jonsson, S. (2000). Remote sensing of volcano surface and internal processes using radar interferometry, in P.J. Mouginis-Mark, J.A. Crisp, J.H. Fink (eds,), Remote Sensing of Active Volcanism, AGU Monograph 116, American Geo-physical Union, Washington, D.C., pp. 179-205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Ramsey .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramsey, M.S., Byrnes, J.M., Wessels, R.L., Izbekov, P. (2015). Applications of high-resolution satellite remote sensing for northern Pacific volcanic arcs. In: Monitoring Volcanoes in the North Pacific. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68750-4_4

Download citation

Publish with us

Policies and ethics